13

I am trying to run a script written using opencv in python which uses webcam to track colored objects (here the object is blue colored), which is also mentioned in opencv's documentation here

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while(1):

    # Take each frame
    _, frame = cap.read()

    # Convert BGR to HSV
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    # define range of blue color in HSV
    lower_blue = np.array([110,50,50])
    upper_blue = np.array([130,255,255])

    # Threshold the HSV image to get only blue colors
    mask = cv2.inRange(hsv, lower_blue, upper_blue)

    # Bitwise-AND mask and original image
    res = cv2.bitwise_and(frame,frame, mask= mask)

    cv2.imshow('frame',frame)
    cv2.imshow('mask',mask)
    cv2.imshow('res',res)
    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break

cv2.destroyAllWindows()

But this code produces error :

OpenCV Error: Sizes of input arguments do not match (The lower bounary is neither an      array of the same size and same type as src, nor a scalar) in inRange, file     /build/buildd/opencv-2.4.2+dfsg/modules/core/src/arithm.cpp, line 2527
Traceback (most recent call last):
File "blue.py", line 19, in <module>
mask = cv2.inRange(hsv, lower_blue, upper_blue)
cv2.error: /build/buildd/opencv-2.4.2+dfsg/modules/core/src/arithm.cpp:2527: error: (     (-209) The lower bounary is neither an array of the same size and same type as src, nor a scalar in function inRange

I've tried solutions provided in related stackoverflow questions, but none of them helped. What is the problem with the code ? why this error arises ?

I'm using opencv 2.4.2 & python 2.7 on ubuntu

2
  • 3
    i have a little python background but seems like you have a data type problem. np.array([110, 50, 50], np.uint8) please try this.. Commented Jan 3, 2014 at 22:02
  • :D that worked ! .. I wrote np.array([110, 50, 50], dtype=np.uint8)...and now it works fine ! ty Commented Jan 4, 2014 at 4:54

3 Answers 3

17

The range of blue color in HSV should be given as :

lower_blue = np.array([110, 50, 50], dtype=np.uint8)
upper_blue = np.array([130,255,255], dtype=np.uint8)
Sign up to request clarification or add additional context in comments.

Comments

1

Here's a HSV color threshold script to determine the lower and upper ranges instead of guess-and-checking

enter image description here

import cv2
import sys
import numpy as np

def nothing(x):
    pass

# Load in image
image = cv2.imread('1.png')

# Create a window
cv2.namedWindow('image')

# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)

# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)

# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0

output = image
wait_time = 33

while(1):

    # get current positions of all trackbars
    hMin = cv2.getTrackbarPos('HMin','image')
    sMin = cv2.getTrackbarPos('SMin','image')
    vMin = cv2.getTrackbarPos('VMin','image')

    hMax = cv2.getTrackbarPos('HMax','image')
    sMax = cv2.getTrackbarPos('SMax','image')
    vMax = cv2.getTrackbarPos('VMax','image')

    # Set minimum and max HSV values to display
    lower = np.array([hMin, sMin, vMin])
    upper = np.array([hMax, sMax, vMax])

    # Create HSV Image and threshold into a range.
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, lower, upper)
    output = cv2.bitwise_and(image,image, mask= mask)

    # Print if there is a change in HSV value
    if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
        print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
        phMin = hMin
        psMin = sMin
        pvMin = vMin
        phMax = hMax
        psMax = sMax
        pvMax = vMax

    # Display output image
    cv2.imshow('image',output)

    # Wait longer to prevent freeze for videos.
    if cv2.waitKey(wait_time) & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()

Comments

0

In order to detect the object based on color in OpenCV-python, I think this repo will help you check out this GitHub repo:

https://github.com/shashiben/Opencv/blob/master/Object%20Detection/object_detect_with_hsv.py

I did track the object based on HSV color using trackbar

1 Comment

Links to external resources are encouraged, but please add context around the link so your fellow users will have some idea what it is and why it’s there. Always quote the most relevant part of an important link, in case the target site is unreachable or goes permanently offline. Please also check how to write a good answer

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.