You can (and should) use well tested and well known libraries.
But if you're looking to learn something (as it seems to be the case) you can do it yourself.
Another reason you may want to use a custom bit array is to use the hard drive to store the array, which comes in handy when calculating primes. To do this you'd need to further split addr, for example lowest 3 bits for the mask, next 28 bits for 256MB of in-memory storage, and from there on - a file name for a buffer file.
Yet another reason for custom bit array is to compress the memory use when specifically searching for primes. After all more than half of your bits will be 'false' because the numbers corresponding to them would be even, so in fact you can both speed up your calculation AND reduce memory requirements if you don't even store the even bits. You can do that by changing the way addr is interpreted. Further more you can also exclude numbers divisible by 3 (only 2 out of every 6 numbers has a chance of being prime) thus reducing memory requirements by 60% compared to plain bit array.
Notice the use of shift and logical operators to make the code a bit more efficient.
byte mask = (byte)(1 << (int)(addr & 7)); for example can be written as
byte mask = (byte)(1 << (int)(addr % 8));
and addr >> 3 can be written as addr / 8
Testing shift/logical operators vs division shows 2.6s vs 4.8s in favor of shift/logical for 200000000 operations.
Here's the code:
void Main()
{
var barr = new BitArray(10);
barr[4] = true;
Console.WriteLine("Is it "+barr[4]);
Console.WriteLine("Is it Not "+barr[5]);
}
public class BitArray{
private readonly byte[] _buffer;
public bool this[long addr]{
get{
byte mask = (byte)(1 << (int)(addr & 7));
byte val = _buffer[(int)(addr >> 3)];
bool bit = (val & mask) == mask;
return bit;
}
set{
byte mask = (byte) ((value ? 1:0) << (int)(addr & 7));
int offs = (int)addr >> 3;
_buffer[offs] = (byte)(_buffer[offs] | mask);
}
}
public BitArray(long size){
_buffer = new byte[size/8 + 1]; // define a byte buffer sized to hold 8 bools per byte. The spare +1 is to avoid dealing with rounding.
}
}