Given a sequence a1a2....a_{m+n} with n +1s and m -1s, if for any 1=< i <=m+n, we have
sum(ai) >=0, i.e.,
a1 >= 0
a1+a2>=0
a1+a2+a3>=0
...
a1+a2+...+a_{m+n}>=0
then the number of sequence that meets the requirement is C(m+n,n) - C(m+n,n-1), where the first item is the total number of sequence, and the second term refers to those sub-sum < 0.
I was wondering whether there is a similar formula for the bi-side sequence number :
a1 >= 0
a1+a2>=0
a1+a2+a3>=0
...
a1+a2+...+a_{m+n}>=0
a_{m+n}>=0
a_{m+n-1}+a_{m+n}>=0
...
a1+a2+...+a_{m+n}>=0
I feel like it can be derived similarly with the single-side subsum problem, but the number C(m+n,n) - 2 * C(m+n,n-1) is definitely incorrect. Any ideas ?

