113

If the dataframe looks like:

Store,Dept,Date,Weekly_Sales,IsHoliday
1,1,2010-02-05,24924.5,FALSE
1,1,2010-02-12,46039.49,TRUE
1,1,2010-02-19,41595.55,FALSE
1,1,2010-02-26,19403.54,FALSE
1,1,2010-03-05,21827.9,FALSE
1,1,2010-03-12,21043.39,FALSE
1,1,2010-03-19,22136.64,FALSE
1,1,2010-03-26,26229.21,FALSE
1,1,2010-04-02,57258.43,FALSE

And I wanna duplicate rows with IsHoliday equal to TRUE, I can do:

is_hol = df['IsHoliday'] == True
df_try = df[is_hol]
df=df.append(df_try*10)

But is there a better way to do this as I need to duplicate holiday rows 5 times, and I have to append 5 times if using the above way.

1

7 Answers 7

125

You can put df_try inside a list and then do what you have in mind:

>>> df.append([df_try]*5,ignore_index=True)

    Store  Dept       Date  Weekly_Sales IsHoliday
0       1     1 2010-02-05      24924.50     False
1       1     1 2010-02-12      46039.49      True
2       1     1 2010-02-19      41595.55     False
3       1     1 2010-02-26      19403.54     False
4       1     1 2010-03-05      21827.90     False
5       1     1 2010-03-12      21043.39     False
6       1     1 2010-03-19      22136.64     False
7       1     1 2010-03-26      26229.21     False
8       1     1 2010-04-02      57258.43     False
9       1     1 2010-02-12      46039.49      True
10      1     1 2010-02-12      46039.49      True
11      1     1 2010-02-12      46039.49      True
12      1     1 2010-02-12      46039.49      True
13      1     1 2010-02-12      46039.49      True
Sign up to request clarification or add additional context in comments.

1 Comment

'DataFrame' object has no attribute 'append' pandas.pydata.org/pandas-docs/version/1.4/whatsnew/… Deprecated since 2022
54

Other way is using concat() function:

import pandas as pd

In [603]: df = pd.DataFrame({'col1':list("abc"),'col2':range(3)},index = range(3))

In [604]: df
Out[604]: 
  col1  col2
0    a     0
1    b     1
2    c     2

In [605]: pd.concat([df]*3, ignore_index=True) # Ignores the index
Out[605]: 
  col1  col2
0    a     0
1    b     1
2    c     2
3    a     0
4    b     1
5    c     2
6    a     0
7    b     1
8    c     2

In [606]: pd.concat([df]*3)
Out[606]: 
  col1  col2
0    a     0
1    b     1
2    c     2
0    a     0
1    b     1
2    c     2
0    a     0
1    b     1
2    c     2

3 Comments

This should be preferred over accepted answer, not that append() got deprecated.
How does this answer the question of replicating specific rows that match some expression?
This is much slower than @grofte's answer (for me)
30

This is an old question, but since it still comes up at the top of my results in Google, here's another way.

import pandas as pd
import numpy as np

df = pd.DataFrame({'col1':list("abc"),'col2':range(3)},index = range(3))

Say you want to replicate the rows where col1="b".

reps = [3 if val=="b" else 1 for val in df.col1]
df.loc[np.repeat(df.index.values, reps)]

You could replace the 3 if val=="b" else 1 in the list interpretation with another function that could return 3 if val=="b" or 4 if val=="c" and so on, so it's pretty flexible.

4 Comments

This will also replicate the index values as well, correct?
I don't know if I'm doing it wrong but this is very slow for me.
This more elegant way is also pretty fast for me compared with using .append(..). My use case is just to replicate a dataframe with a single row 1000x of times.
Not scalable: try doing for val in df.col1 on 100 million line dataframe.. :(
10

Appending and concatenating is usually slow in Pandas so I recommend just making a new list of the rows and turning that into a dataframe (unless appending a single row or concatenating a few dataframes).

import pandas as pd

df = pd.DataFrame([
[1,1,'2010-02-05',24924.5,False],
[1,1,'2010-02-12',46039.49,True],
[1,1,'2010-02-19',41595.55,False],
[1,1,'2010-02-26',19403.54,False],
[1,1,'2010-03-05',21827.9,False],
[1,1,'2010-03-12',21043.39,False],
[1,1,'2010-03-19',22136.64,False],
[1,1,'2010-03-26',26229.21,False],
[1,1,'2010-04-02',57258.43,False]
], columns=['Store','Dept','Date','Weekly_Sales','IsHoliday'])

temp_df = []
for row in df.itertuples(index=False):
    if row.IsHoliday:
        temp_df.extend([list(row)]*5)
    else:
        temp_df.append(list(row))

df = pd.DataFrame(temp_df, columns=df.columns)

2 Comments

For the record, it is probably faster to do an outer join but the code gets quite convoluted for a small gain.
This approach is significantly faster than the others, for me anyway
6

You can do it in one line:

df.append([df[df['IsHoliday'] == True]] * 5, ignore_index=True)

or

df.append([df[df['IsHoliday']]] * 5, ignore_index=True)

Comments

5

Another alternative to append() is to first replace the values of a column by a list of entries and then explode() (either using ignore_index=True or not, depending on what you want):

df['IsHoliday'] = df['IsHoliday'].apply(lambda x: 5*[x] if (x == True) else x)

df.explode('IsHoliday', ignore_index=True)

The nice thing about this one is that you can already use the list in the apply() call to build copies of rows with modified values in a column, in case you wanted to do that later anyways...

1 Comment

This is the best of all answers!!
1

Here is a another way of doing it using numpy.tile()

df = pd.DataFrame([
[1,1,'2010-02-05',24924.5,False],
[1,1,'2010-02-12',46039.49,True],
[1,1,'2010-02-19',41595.55,False],
[1,1,'2010-02-26',19403.54,False],
[1,1,'2010-03-05',21827.9,False],
[1,1,'2010-03-12',21043.39,False],
[1,1,'2010-03-19',22136.64,False],
[1,1,'2010-03-26',26229.21,False],
[1,1,'2010-04-02',57258.43,False]
], columns=['Store','Dept','Date','Weekly_Sales','IsHoliday'])
df= df.loc[df['IsHoliday']==True]


%%timeit
pd.concat([df]*5,axis=0)

801 µs ± 29.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%%timeit
pd.DataFrame(np.tile(df.to_numpy(), (5,1)), columns = df.columns)

261 µs ± 16.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.