You can do something like the following using the vectorized string split:
>>> df
event_date x
0 1/3/2013 1
1 11/01/2011-10/01/2012 1
2 11/01/2011-10/01/2012 1
3 11/01/2011-10/01/2012 1
4 10/01/2012 - 02/18/2013 1
5 2/12/2013 1
6 01/18/2013-01/23/2013 1
7 11/01/2012-01/19/2013 1
>>> df['beg'] = df['event_date'].str.split('\s*-\s*').str[0]
>>> df['end'] = df['event_date'].str.split('\s*-\s*').str[1]
>>> df
event_date x beg end
0 1/3/2013 1 1/3/2013 NaN
1 11/01/2011-10/01/2012 1 11/01/2011 10/01/2012
2 11/01/2011-10/01/2012 1 11/01/2011 10/01/2012
3 11/01/2011-10/01/2012 1 11/01/2011 10/01/2012
4 10/01/2012 - 02/18/2013 1 10/01/2012 02/18/2013
5 2/12/2013 1 2/12/2013 NaN
6 01/18/2013-01/23/2013 1 01/18/2013 01/23/2013
7 11/01/2012-01/19/2013 1 11/01/2012 01/19/2013
Edit As @DSM points out you could also do something like the following:
>>> pd.DataFrame(df['event_date'].str.split('\s*-\s*').tolist(),
columns=['beg','end'])
beg end
0 1/3/2013 None
1 11/01/2011 10/01/2012
2 11/01/2011 10/01/2012
3 11/01/2011 10/01/2012
4 10/01/2012 02/18/2013
5 2/12/2013 None
6 01/18/2013 01/23/2013
7 11/01/2012 01/19/2013