I describe the outcome of a strategy by numerous rows. Each row contains a symbol (describing an asset), a timestamp (think of a backtest) and a price + weight. Before a strategy runs I delete all previous results from this particular strategy (I have many strategies). I then loop over all symbols and all times.
# delete all previous data written by this strategy
StrategyRow.objects.filter(strategy=strategy).delete()
for symbol in symbols.keys():
s = symbols[symbol]
for t in portfolio.prices.index:
p = prices[symbol][t]
w = weights[symbol][t]
row = StrategyRow.objects.create(strategy=strategy, symbol=s, time=t)
if not math.isnan(p):
row.price = p
if not math.isnan(w):
row.weight = w
row.save()
This works but is very, very slow. Is there a chance to achive the same with write_frame from pandas? Or maybe using faster raw sql?