I think there's a bit of confusion here about convolution. We use convolution in the time domain to calculate the response of a linear system to an arbitrary input. To do this, we need to know the impulse response of the system. Be careful switching between continuous and discrete systems - see e.g. http://en.wikipedia.org/wiki/Impulse_invariance.
The (continuous) impulse response of your system (which I assume to be for the resistor voltage of an L-R circuit) I have defined for convenience as a function of time t: IR = lambda t: (R/L)*np.exp(-(R/L)*t) * H.
I have also assumed that your input is the Heaviside step function, which I've defined on the time interval [0, 1], for a timestep of 0.001 s.
When we convolve (discretely), we effectively flip one function around and slide it along the other one, multiplying corresponding values and then taking the sum. To use the continuous impulse response with a step function which actually comprises of a sequence of Dirac delta functions, we need to multiply the continuous impulse response by the time step dt, as described in the Wikipedia link above on impulse invariance. NB - setting H[0] = 0.5 is also important.
We can visualise this operation below. Any given red marker represents the response at a given time t, and is the "sum-product" of the green input and a flipped impulse response shifted to the right by t. I've tried to show this with a few grey impulse responses.

The code to do the calculation is here.
import numpy as np
import matplotlib.pyplot as plt
R = 1e3 # Resistance
L = 3. #Inductance
dt = 0.001 # Millisecond timestep
# Define interval 1 second long, interval dt
t = np.arange(0, 1, dt)
# Define step function
H = np.ones_like(t)
H[0] = 0.5 # Correction for impulse invariance (cf http://en.wikipedia.org/wiki/Impulse_invariance)
# RL circuit - resistor voltage impulse response (cf http://en.wikipedia.org/wiki/RL_circuit)
IR = lambda t: (R/L)*np.exp(-(R/L)*t) * H # Don't really need to multiply by H as w is zero for t < 0
# Response of resistor voltage
response = np.convolve(H, IR(t)*dt, 'full')
The extra code to make the plot is here:
# Define new, longer, time array for plotting response - must be same length as response, with step dt
tp = np.arange(len(response))* dt
plt.plot(0-t, IR(t), '-', label='Impulse response (flipped)')
for q in np.arange(0.01, 0.1, 0.01):
plt.plot(q-t, IR(t), 'o-', markersize=3, color=str(10*q))
t = np.arange(-1, 1, dt)
H = np.ones_like(t)
H[t<0] = 0.
plt.plot(t, H, 's', label='Unit step function')
plt.plot(tp, response, '-o', label='Response')
plt.tight_layout()
plt.grid()
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.legend()
plt.show()
Finally, if you still have some confusion about convolution, I strongly recommend "Digital Signal Processing: A Practical Guide for Engineers and Scientists" by Steven W. Smith.