Big/huge array always pose problems when being partially processed, like in this case, as creating two extra (even if half-sized) arrays can be both time and memory consuming. What if, for example, you just want to compute the mean and standard deviation of oddly and evenly positioned numbers, but this will require calling a dedicated function which requires a sequence as input?
Thus why not creating two sub-collections that instead of duplicating the array contents, they point to the original array, in a transparent manner to allow querying them for elements:
extension Collection where Index: Strideable{
func stride(from: Index, to: Index, by: Index.Stride) -> StridedToCollection<Self> {
return StridedToCollection(self, from: from, to: to, by: by)
}
}
struct StridedToCollection<C>: Collection where C: Collection, C.Index: Strideable {
private let _subscript : (C.Index) -> C.Element
private let step: C.Index.Stride
fileprivate init(_ collection: C, from: C.Index, to: C.Index, by: C.Index.Stride) {
startIndex = from
endIndex = Swift.max(to, startIndex)
step = by
_subscript = { collection[$0] }
}
let startIndex: C.Index
let endIndex: C.Index
func index(after i: C.Index) -> C.Index {
let next = i.advanced(by: step)
return next >= endIndex ? endIndex : next
}
subscript(_ index: C.Index) -> C.Element {
return _subscript(index)
}
}
The Collection extension and the associated struct would create a pseudo-array that you can use to access only the elements you are interested into.
Usage is simple:
let numbers: [Int] = [1, 2, 3, 4]
let stride1 = numbers.stride(from: 0, to: numbers.count, by: 2)
let stride2 = numbers.stride(from: 1, to: numbers.count, by: 2)
print(Array(stride1), Array(stride2))
With the above you can iterate the two strides without worrying you'll double the amount of memory. And if you actually need two sub-arrays, you just Array(stride)-ify them.
O(n). Just create two new arrays and loop through the old one, alternating where you put an element on each iteration.