I'm parsing the US Patent XML files (downloaded from Google patent dumps) using Python and Beautifulsoup; parsed data is exported to MYSQL database.
Each year's data contains close to 200-300K patents - which means parsing 200-300K xml files.
The server on which I'm running the python script is pretty powerful - 16 cores, 160 gigs of RAM, etc. but still it is taking close to 3 days to parse one year's worth of data.

I've been learning and using python since 2 years - so I can get stuff done but do not know how to get it done in the most efficient manner. I'm reading on it.
How can I optimize the below script to make it efficient?
Any guidance would be greatly appreciated.
Below is the code:
from bs4 import BeautifulSoup
import pandas as pd
from pandas.core.frame import DataFrame
import MySQLdb as db
import os
cnxn = db.connect('xx.xx.xx.xx','xxxxx','xxxxx','xxxx',charset='utf8',use_unicode=True)
def separated_xml(infile):
file = open(infile, "r")
buffer = [file.readline()]
for line in file:
if line.startswith("<?xml "):
yield "".join(buffer)
buffer = []
buffer.append(line)
yield "".join(buffer)
file.close()
def get_data(soup):
df = pd.DataFrame(columns = ['doc_id','patcit_num','patcit_document_id_country', 'patcit_document_id_doc_number','patcit_document_id_kind','patcit_document_id_name','patcit_document_id_date','category'])
if soup.findAll('us-citation'):
cit = soup.findAll('us-citation')
else:
cit = soup.findAll('citation')
doc_id = soup.findAll('publication-reference')[0].find('doc-number').text
for x in cit:
try:
patcit_num = x.find('patcit')['num']
except:
patcit_num = None
try:
patcit_document_id_country = x.find('country').text
except:
patcit_document_id_country = None
try:
patcit_document_id_doc_number = x.find('doc-number').text
except:
patcit_document_id_doc_number = None
try:
patcit_document_id_kind = x.find('kind').text
except:
patcit_document_id_kind = None
try:
patcit_document_id_name = x.find('name').text
except:
patcit_document_id_name = None
try:
patcit_document_id_date = x.find('date').text
except:
patcit_document_id_date = None
try:
category = x.find('category').text
except:
category = None
print doc_id
val = {'doc_id':doc_id,'patcit_num':patcit_num, 'patcit_document_id_country':patcit_document_id_country,'patcit_document_id_doc_number':patcit_document_id_doc_number, 'patcit_document_id_kind':patcit_document_id_kind,'patcit_document_id_name':patcit_document_id_name,'patcit_document_id_date':patcit_document_id_date,'category':category}
df = df.append(val, ignore_index=True)
df.to_sql(name = 'table_name', con = cnxn, flavor='mysql', if_exists='append')
print '1 doc exported'
i=0
l = os.listdir('/path/')
for item in l:
f = '/path/'+item
print 'Currently parsing - ',item
for xml_string in separated_xml(f):
soup = BeautifulSoup(xml_string,'xml')
if soup.find('us-patent-grant'):
print item, i, xml_string[177:204]
get_data(soup)
else:
print item, i, xml_string[177:204],'***********************************soup not found********************************************'
i+=1
print 'DONE!!!'
lxml.html? Some people experienced thatBeautifulSoupis much slower thanlxml.html, f.e : blog.dispatched.ch/2010/08/16/beautifulsoup-vs-lxml-performance