Your input is a list of tuples, each tuple consisting of a number and an array. For some reason you want to throw away the number, and just combine the arrays into a larger array - is that right?
In [1067]: x=[(1.2840277121727839, np.array([-0.6778734, -0.73517866])),
(0.049083398938327472, np.array([-0.73517866, 0.6778734 ]))]
In [1068]: x
Out[1068]:
[(1.2840277121727839, array([-0.6778734 , -0.73517866])),
(0.04908339893832747, array([-0.73517866, 0.6778734 ]))]
A list comprehension does a nice job of extracting the desired elements for the tuples:
In [1069]: [y[1] for y in x]
Out[1069]: [array([-0.6778734 , -0.73517866]), array([-0.73517866, 0.6778734 ])]
and vstack is great for combining arrays into a larger one.
In [1070]: np.vstack([y[1] for y in x])
Out[1070]:
array([[-0.6778734 , -0.73517866],
[-0.73517866, 0.6778734 ]])
vstack is just concatenate with an added step that ensures the inputs are 2d.
np.array([y[1] for y in x]) also works, since you are adding a dimension.
I'm assuming that array([-0.6778734, -0.73517866], [-0.73517866, 0.6778734]) has a typo - that it is missing a set of []. The 2nd parameter to np.array is the dtype, not another list.
Note that both np.array and np.concatentate take a list. It can be list of lists, or list of arrays. It doesn't make much difference. And at this stage don't worry about computational efficiency. Any time you combine the data from 2 or more arrays there will be copying. Arrays have a fixed size, and can't 'grow' without making a new copy.
In [1074]: np.concatenate([y[1] for y in x]).reshape(2,2)
Out[1074]:
array([[-0.6778734 , -0.73517866],
[-0.73517866, 0.6778734 ]])
Lists are effectively 1d, so np.concatenate joins them on that dimension, producing a 4 element 1d array. reshape corrects that. vstack makes them both (1,2) and does a concatenate on the 1st dimension.
Another expression that joins the arrays on a new dimension:
np.concatenate([y[1][None,...] for y in x], axis=0)
The [None,...] adds a new dimension at the start.
array([[-0.6778734, -0.73517866], [-0.73517866, 0.6778734]])