Here is what I can do in Swift:
extension Int {
func square() -> Int { return self * self }
}
And then call it like this: 3.square(), that gives me 9. Also, i can do it like so: Int.square(3), and it will give me () -> (Int). So, Int.square(3)() gives 9.
But if I write let array = [1, 2, 3]; Array.map(array) it gives error Cannot convert value of type 'Array<Int>' to expected argument of type '[_]'
Question is, how I can use Array.map in that way?
EDIT Ok, I'll try to explain my problem in details. Now, I have function like this:
func map<T, U>(f: T -> U) -> [T] -> [U] {
return { ts in
ts.map(f)
}
}
It works, but only on arrays. There are many types that have map function, and it not very nice to declare global function like that for every type. So, lets say there is type C that have map function C<T> -> (T -> U) -> C<U>
Also, lets say I have function f, that transform A -> B -> C into B -> A -> C.
So, it looks like I can do something like this:
let array = [1, 2, 3]
let square: Int -> Int = {$0 * $0}
map(square)(array) // [1, 4, 9], works fine
f(Array.map)(square)(array) // Error
Question is not about code readability but about how Swift's type system works.
Array.map(a)will have any idea what the statement does?Array.map(a)gives function of type(Int -> T) -> [T]map(l)(a)there is no indication that an array with squared values will be returned, I have to go looking for the declaration ofland I have lost my focus. Evenmap({$0 * $0})(a)ormap(squareValue)(a)is better. Write for readability for the next developer—it may even be you next year.Array.map, not about me in the next year or another developer, andlis just some lambdaInt -> Int, it doesn't matter what inside it.