Because this question is tagged Pandas, I assume we are talking dataframes and series instead of plain lists. You can use loc to locate the rows and columns that match you criteria (e.g. whether each element in the LOT column isin the series of lots of interest).
df = pd.DataFrame({'LOT': ['A1111', 'A2222', 'A3333', 'B1111', 'B2222', 'B3333'],
'LOT_VIRTUAL_LINE': ['AAA'] * 3 + ['BBB'] * 3})
s = pd.Series(['A1111', 'B2222'], name='Lots Of Interest')
# or... df2 = pd.read_csv('file_path/file_name.csv')
# Value of 'GROUP' defaults to 'LOT_VIRTUAL_LINE'.
df['GROUP'] = df.LOT_VIRTUAL_LINE
# But gets overwritten by 'LOT' if it is in the 'Lots of Interest' series.
mask = df.LOT.isin(s)
# or... mask = df.LOT.isin(df2['Lots of Interest']) # Whatever the column name is.
df.loc[mask, 'GROUP'] = df.loc[mask, 'LOT']
# Confirm results.
>>> df
LOT LOT_VIRTUAL_LINE GROUP
0 A1111 AAA A1111
1 A2222 AAA AAA
2 A3333 AAA AAA
3 B1111 BBB BBB
4 B2222 BBB B2222
5 B3333 BBB BBB