I have two functions. My first function creates a GUI where the user inputs min and max values for 8 different species. My second function attempts to use those min and max values to create a simulation of 1000 mixtures within the boundaries of their respective min and max values whilst abiding by a number of different constraints. However, when I run the simulation I get no values. I only get the CSV file with the headings of the species. I also get no valuable error. My code is below and I am out of ideas of how to make this work. Any help would be much appreciated.
import Tkinter
import pandas as pd
import numpy as np
class simulation_tk(Tkinter.Tk):
def __init__(self,parent):
Tkinter.Tk.__init__(self,parent)
self.parent = parent
self.initialize()
self.grid()
def initialize(self):
self.c2_low =Tkinter.StringVar()
self.c3_low =Tkinter.StringVar()
self.ic4_low =Tkinter.StringVar()
self.nc4_low =Tkinter.StringVar()
self.ic5_low =Tkinter.StringVar()
self.nc5_low =Tkinter.StringVar()
self.neoc5_low =Tkinter.StringVar()
self.n2_low = Tkinter.StringVar()
self.c2_high =Tkinter.StringVar()
self.c3_high =Tkinter.StringVar()
self.ic4_high =Tkinter.StringVar()
self.nc4_high =Tkinter.StringVar()
self.ic5_high =Tkinter.StringVar()
self.nc5_high =Tkinter.StringVar()
self.neoc5_high=Tkinter.StringVar()
self.n2_high = Tkinter.StringVar()
self.entry = Tkinter.Entry(self, textvariable = self.c2_low).grid(column=0,row=1,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.c2_high).grid(column=0,row=2,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.c3_low).grid(column=0,row=3,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.c3_high).grid(column=0,row=4,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic4_low).grid(column=1,row=1,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic4_high).grid(column=1,row=2,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc4_low).grid(column=1,row=3,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc4_high).grid(column=1,row=4,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic5_low).grid(column=0,row=5,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic5_high).grid(column=0,row=6,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc5_low).grid(column=0,row=7,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc5_high).grid(column=0,row=8,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.neoc5_low).grid(column=1,row=5,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.neoc5_high).grid(column=1,row=6,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.n2_low).grid(column=1,row=7,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.n2_high).grid(column=1,row=8,sticky='EW')
self.resizable(False,False)
button = Tkinter.Button(self,text=u"simulate", command =self.simulation)
button.grid(column=3,row=9)
def simulation(self):
sample_runs =10000 # Sample Population needs to be higher than exporting population
export_runs = 1000 # How many samples we actually take
c2_low = self.c2_low.get()
c2_high = self.c2_high.get()
c3_low = self.c3_low.get()
c3_high = self.c3_high.get()
ic4_low = self.ic4_low.get()
ic4_high =self.ic4_high.get()
nc4_low =self.nc4_low.get()
nc4_high = self.nc4_high.get()
ic5_low = self.ic5_low.get()
ic5_high = self.ic5_high.get()
nc5_low = self.nc5_low.get()
nc5_high = self.nc5_high.get()
neoc5_low = self.neoc5_low.get()
neoc5_high = self.neoc5_high.get()
n2_low = self.n2_low.get()
n2_high = self.n2_high.get()
c2 = np.random.uniform(c2_low,c2_high,sample_runs)
c3 = np.random.uniform(c3_low,c3_high, sample_runs)
ic4 = np.random.uniform(ic4_low,ic4_high,sample_runs)
nc4 = np.random.uniform(nc4_low,nc4_high,sample_runs)
ic5 = np.random.uniform(ic5_low,ic5_high,sample_runs)
nc5 = np.random.uniform(nc5_low,nc5_high,sample_runs)
neoc5 = np.random.uniform(neoc5_low ,neoc5_high,sample_runs)
n2 = np.random.uniform(n2_low, n2_high,sample_runs)
# SETS CONSTRAINTS BASED ON RANGES
masked = np.where((c3>=c3_low) & (c3<=c3_high) & (c2>=c2_low) & (c2<= c2_high) & (ic4>=ic4_low) &
(ic4<= ic4_high) & (nc4>= nc4_low) & (nc4<= nc4_high) & (ic5>= ic5_low) & (ic5<= ic5_high)& (nc5>= nc5_low)&
(nc5<= nc5_high)& (neoc5>= neoc5_low)& (neoc5<=neoc5_high) & (n2>=n2_low) & (n2<= n2_high))
# MASKED CREATES AN INDEX (Where constraints are held) FOR LOOKING THROUGH DATA
c2 = c2[masked][:export_runs]
c3 = c3[masked][:export_runs]
ic4 = ic4[masked][:export_runs]
nc4 = nc4[masked][:export_runs]
ic5 = ic5[masked][:export_runs]
nc5 = nc5[masked][:export_runs]
neoc5 = neoc5[masked][:export_runs]
n2 = n2[masked][:export_runs]
# DETERMINES CONC FROM METHANE BY BALANCE
c1 = 100-c2-c3-nc4-ic4-nc5-ic5-neoc5-n2
#CREATES A SERIES FOR EACH COMPONENET AND ADDS COLUMNS TO A FINAL DATAFRAME
c1_ser = pd.Series(c1)
c2_ser = pd.Series(c2)
c3_ser = pd.Series(c3)
ic4_ser = pd.Series(ic4)
nc4_ser = pd.Series(nc4)
ic5_ser = pd.Series(ic5)
nc5_ser = pd.Series(nc5)
neoc5_ser = pd.Series(neoc5)
n2_ser = pd.Series(n2)
#EXPORTS DATAFRAME TO .CSV FILE NAMED LNG_DATA
df = pd.DataFrame([c1_ser, c2_ser, c3_ser, ic4_ser, nc4_ser, ic5_ser, nc5_ser, neoc5_ser, n2_ser]).T
df.columns = ['C1','C2','C3','nC4','iC4','nC5','iC5','neoC5','N2']
df.to_csv(path to directory you want the saved file)
if __name__ == "__main__":
app = simulation_tk(None)
app.title('Simulation')
app.mainloop()
EDIT:
The code for the original simulation function is below:
import numpy as np
import pandas as pd
import time
def LNG_SIMULATION(no_of_simulations):
t0 = time.time()
# SET COMPOSITION RANGES HERE:
c2_low =0; c2_high =14
c3_low =0; c3_high =4
nc4_low =0; nc4_high =1.5
ic4_low =0; ic4_high =1.2
nc5_low =0; nc5_high =0.1
ic5_low =0; ic5_high =0.1
neoc5_low =0; neoc5_high =0.01
n2_low =0; n2_high =1.5
# PRODUCES A RANDOM UNIFORM DISTRIBUTION BETWEEN LOW AND HIGH * runs
sample_runs =10000 # Sample Population needs to be higher than exporting population
export_runs = no_of_simulations # How many samples we actually take
c2 = np.random.uniform(c2_low,c2_high,sample_runs)
c3 = np.random.uniform(c3_low,c3_high, sample_runs)
ic4 = np.random.uniform(ic4_low,ic4_high,sample_runs)
nc4 = np.random.uniform(nc4_low,nc4_high,sample_runs)
ic5 = np.random.uniform(ic5_low,ic5_high,sample_runs)
nc5 = np.random.uniform(nc5_low,nc5_high,sample_runs)
neoc5 = np.random.uniform(neoc5_low,neoc5_high,sample_runs)
n2 = np.random.uniform(n2_low, n2_high,sample_runs)
# SETS CONSTRAINTS BASED ON RANGES
masked = np.where((c3>=0) & (c3<=4) & (c2>=0) & (c2<=14) & (ic4>=0) &
(ic4<=1.5) & (nc4>=0) & (nc4<=1.2) & (ic5>=0) & (ic5<=0.1)& (nc5>=0)&
(nc5<=0.1)& (neoc5>=0)& (neoc5<=0.01) & (n2>=0) & (n2<=1.5))
# MASKED CREATES AN INDEX (Where constraints are held) FOR LOOKING THROUGH DATA
c2 = c2[masked][:export_runs]
c3 = c3[masked][:export_runs]
ic4 = ic4[masked][:export_runs]
nc4 = nc4[masked][:export_runs]
ic5 = ic5[masked][:export_runs]
nc5 = nc5[masked][:export_runs]
neoc5 = neoc5[masked][:export_runs]
n2 = n2[masked][:export_runs]
# DETERMINES CONC FROM METHANE BY BALANCE
c1 = 100-c2-c3-nc4-ic4-nc5-ic5-neoc5-n2
#CREATES A SERIES FOR EACH COMPONENET AND ADDS COLUMNS TO A FINAL DATAFRAME
c1_ser = pd.Series(c1)
c2_ser = pd.Series(c2)
c3_ser = pd.Series(c3)
ic4_ser = pd.Series(ic4)
nc4_ser = pd.Series(nc4)
ic5_ser = pd.Series(ic5)
nc5_ser = pd.Series(nc5)
neoc5_ser = pd.Series(neoc5)
n2_ser = pd.Series(n2)
print np.min(c1); print np.max(c1) # Check for methane range
#EXPORTS DATAFRAME TO .CSV FILE NAMED LNG_DATA
df = pd.DataFrame([c1_ser, c2_ser, c3_ser, ic4_ser, nc4_ser, ic5_ser, nc5_ser, neoc5_ser, n2_ser]).T
df.columns = ['C1','C2','C3','nC4','iC4','nC5','iC5','neoC5','N2']
df.to_csv(filepath)
t1 = time.time()
tfinal = t1-t0, 'seconds'
print tfinal
LNG_SIMULATION(1000)
this gives the following output as a csv file:
each row adds up to 100, hence the c1 = 100- (sum of all the other components)
C1 C2 C3 nC4 iC4 nC5 iC5 neoC5 N2
0 82.85372539 12.99851014 2.642744858 0.129878248 0.800397967 0.002835756 0.01996335 0.00665644 0.545287856
1 97.53896049 1.246468861 0.00840227 0.616819596 0.340552181 0.093463733 0.0415282 0.002044789 0.11175988
2 96.06680372 1.005440722 0.427965685 0.944281965 0.354424967 0.029694142 0.046906668 0.001961002 1.122521133
3 92.152083 4.558717345 1.850648013 0.060053009 0.802721707 0.055533032 0.013490485 0.008897805 0.497855601
4 81.68486996 13.21690811 2.478113198 0.825638261 0.963227282 0.02162254 0.03812538 0.006329348 0.765165918
5 86.4237313 9.387647074 2.729233511 0.562534986 0.786110737 0.050537327 0.026122606 0.000290321 0.033792141
6 95.11319788 2.403944121 0.467770537 0.229967177 0.220494035 0.073742963 0.007893607 0.007473005 1.475516673
7 92.501114 2.677293658 2.742409857 0.608661787 0.237898432 0.073326044 0.030292277 0.002908029 1.126095919
8 89.83876672 5.850123215 2.598266005 0.060712896 0.29401403 0.037017143 0.048577495 0.001888549 1.270633946
9 84.14677099 13.9234657 0.214404288 0.535574576 0.677735065 0.061556983 0.015255684 0.006789481 0.418447232
10 94.73390493 2.302821233 1.478361587 0.500991046 0.022823156 0.030764131 0.024351373 0.009064709 0.896917832
1000 rows.
FINAL EDIT:
self.entry = Tkinter.Entry(self, textvariable = self.c2_low).grid(column=0,row=1,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.c2_high).grid(column=1,row=1,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.c3_low).grid(column=0,row=2,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.c3_high).grid(column=1,row=2,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic4_low).grid(column=0,row=3,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic4_high).grid(column=1,row=3,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc4_low).grid(column=0,row=4,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc4_high).grid(column=1,row=4,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic5_low).grid(column=0,row=5,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.ic5_high).grid(column=1,row=5,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc5_low).grid(column=0,row=6,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.nc5_high).grid(column=1,row=6,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.neoc5_low).grid(column=0,row=7,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.neoc5_high).grid(column=1,row=7,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.n2_low).grid(column=0,row=8,sticky='EW')
self.entry = Tkinter.Entry(self, textvariable = self.n2_high).grid(column=1,row=8,sticky='EW')
None? Is it succeeding but the values are an empty string? Are you getting the values from the GUI ok, but your calculations are returning nothin?