I am trying to make a new columnn with conditional statements utilizing Pandas Version 0.17.1. I have two csv's both about 100mb's in size.
What I have:
CSV1:
Index TC_NUM
1241 1105.0017
1242 1105.0018
1243 1105.0019
1244 1105.002
1245 1105.0021
1246 1105.0022
CSV2:
KEYS TC_NUM
UXS-689 3001.0045
FIT-3015 1135.0027
FIT-2994 1140.0156
FIT-2991 1910, 1942.0001, 3004.0004, 3004.0020, 3004.0026, 3004.0063, 3004.0065, 3004.0079, 3004.0084, 3004.0091, 2101.0015, 2101.0016, 2101.0017, 2101.0018, 2101.0050, 2101.0052, 2101.0054, 2101.0055, 2101.0071, 2101.0074, 2101.0075, 2206.0001, 2103.0001, 2103.0002, 2103.0009, 2103.0011, 3000.0004, 3000.0030, 1927.0020
FIT-2990 2034.0002, 3004.0035, 3004.0084, 2034.0001
FIT-2918 3001.0039, 3004.0042
What I want:
Index TC_NUM Matched_Keys
1241 1105.0017 FIT-3015
1242 1105.0018 UXS-668
1243 1105.0019 FIT-087
1244 1105.002 FIT-715
1245 1105.0021 FIT-910
1246 1105.0022 FIT-219
If the TC_NUM in CSV2 matches the TC_NUM from CSV1, it prints the key in a column on CSV1
Code:
dftakecolumns = pd.read_csv('JiraKeysEnv.csv')
dfmergehere = pd.read_csv('output2.csv')
s = dftakecolumns['KEYS']
a = dftakecolumns['TC_NUM']
d = dfmergehere['TC_NUM']
for crows in a:
for toes in d:
if toes == crows:
print toes
dfmergehere['Matched_Keys'] = dftakecolumns.apply(toes, axis=None, join_axis=None, join='outer')
typeof columnTC_NUMofCSV2?print type(dftakecolumns.at[0,'TC_NUM'])print type(dftakecolumns.iat[0,0])andprint type(dftakecolumns.iat[0,1])