I have dataframe where I went to do multiple column aggregations in pandas.
import pandas as pd
import numpy as np
df = pd.DataFrame({'ser_no': [1, 1, 1, 2, 2, 2, 2, 3, 3, 3],
'CTRY_NM': ['a', 'a', 'b', 'e', 'e', 'a', 'b', 'b', 'b', 'd'],
'lat': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'long': [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]})
df2 = df.groupby(['ser_no', 'CTRY_NM']).lat.agg({'avg_lat': np.mean})
With this code, I get the mean for lat. I would also like to find the mean for long.
I tried df2 = df.groupby(['ser_no', 'CTRY_NM']).lat.agg({'avg_lat': np.mean}).long.agg({'avg_long': np.mean}) but this produces
AttributeError: 'DataFrame' object has no attribute 'long'
If I just do avg_long, the code works as well.
df2 = df.groupby(['ser_no', 'CTRY_NM']).long.agg({'avg_long': np.mean})
In[2]: df2
Out[42]:
avg_long
ser_no CTRY_NM
1 a 21.5
b 23.0
2 a 26.0
b 27.0
e 24.5
3 b 28.5
d 30.0
Is there a way to do this in one step or is this something I have to do separately and join back later?