Presumably your arrays a and b are arrays of unsigned 8 bit integers--you can check by inspecting the attribute a.dtype. When you square them, the data type is preserved, and the 8 bit values overflow, which means the values "wrap around" (i.e. the squared values are modulo 256):
In [7]: a = np.array([[0, 254, 1, 255, 0, 1]], dtype=np.uint8)
In [8]: np.square(a)
Out[8]: array([[0, 4, 1, 1, 0, 1]], dtype=uint8)
In [9]: b = np.array([[1, 0, 252, 0, 255, 255]], dtype=np.uint8)
In [10]: np.square(a) + np.square(b)
Out[10]: array([[ 1, 4, 17, 1, 1, 2]], dtype=uint8)
In [11]: np.sqrt(np.square(a) + np.square(b))
Out[11]:
array([[ 1. , 2. , 4.12310553, 1. , 1. ,
1.41421354]], dtype=float32)
To avoid the problem, you can tell np.square to use a floating point data type:
In [15]: np.sqrt(np.square(a, dtype=np.float64) + np.square(b, dtype=np.float64))
Out[15]:
array([[ 1. , 254. , 252.00198412, 255. ,
255. , 255.00196078]])
You could also use the function numpy.hypot, but you might still want to use the dtype argument, otherwise the default data type is np.float16:
In [16]: np.hypot(a, b)
Out[16]: array([[ 1., 254., 252., 255., 255., 255.]], dtype=float16)
In [17]: np.hypot(a, b, dtype=np.float64)
Out[17]:
array([[ 1. , 254. , 252.00198412, 255. ,
255. , 255.00196078]])
You might wonder why the dtype argument that I used in numpy.square and numpy.hypot is not shown in the functions' docstrings. Both of these functions are numpy "ufuncs", and the authors of numpy decided that it was better to show only the main arguments in the docstring. The optional arguments are documented in the reference manual.
import numpy as npa = [[ 0 ,254 , 1, 255, 0 , 1]]b = [[ 1 , 0, 252 , 0, 255, 255]]c = np.sqrt(np.square(a)+np.square(b))Output:[[ 1. 254. 252.00198412 255. 255. 255.00196078]]The extra square brackets are not needed, but I left them in place to show your code runs, at least with a short example.