I'm trying to import a csv file with pandas.read_csv. The file is as follows:
"COL_A","COL_B","COL_C"
"ROW1COLA","ROW1COLB","ROW1COLC","ROW1COLD"
"ROW2COLA","ROW2COLB","ROW2COLC","ROW2COLD"
"ROW3COLA","ROW3COLB","ROW3COLC","ROW3COLD"
"ROW4COLA","ROW4COLB","ROW4COLC","ROW4COLD"
"ROW5COLA","ROW5COLB","ROW5COLC","ROW5COLD"
"ROW6COLA","ROW6COLB","ROW6COLC","ROW6COLD"
"ROW7COLA","ROW7COLB","ROW7COLC","ROW7COLD"
in a first attempt I ran:
data = pd.read_csv('broken.csv')
and I got:
COL_A COL_B COL_C
ROW1COLA ROW1COLB ROW1COLC ROW1COLD
ROW2COLA ROW2COLB ROW2COLC ROW2COLD
ROW3COLA ROW3COLB ROW3COLC ROW3COLD
ROW4COLA ROW4COLB ROW4COLC ROW4COLD
ROW5COLA ROW5COLB ROW5COLC ROW5COLD
ROW6COLA ROW6COLB ROW6COLC ROW6COLD
ROW7COLA ROW7COLB ROW7COLC ROW7COLD
Setting index_col=False
data = pd.read_csv('broken.csv',index_col=False)
i got
COL_A COL_B COL_C
0 ROW1COLA ROW1COLB ROW1COLC
1 ROW2COLA ROW2COLB ROW2COLC
2 ROW3COLA ROW3COLB ROW3COLC
3 ROW4COLA ROW4COLB ROW4COLC
4 ROW5COLA ROW5COLB ROW5COLC
5 ROW6COLA ROW6COLB ROW6COLC
6 ROW7COLA ROW7COLB ROW7COLC
if I add prefix = 'X'
data = pd.read_csv('broken.csv',index_col=False,prefix='X')
i get
COL_A COL_B COL_C
0 ROW1COLA ROW1COLB ROW1COLC
1 ROW2COLA ROW2COLB ROW2COLC
2 ROW3COLA ROW3COLB ROW3COLC
3 ROW4COLA ROW4COLB ROW4COLC
4 ROW5COLA ROW5COLB ROW5COLC
5 ROW6COLA ROW6COLB ROW6COLC
6 ROW7COLA ROW7COLB ROW7COLC
Same with read_table
data = pd.read_table('broken.csv',index_col=True,sep=',')
I want to know if there is any way that pandas automatically assigns a header and take values of the missing header column