You can memoize the Fibonacci function for efficiency, but if you require a recursive function, it's still going to take at least O(n):
def mem_fib(n, _cache={}):
'''efficiently memoized recursive function, returns a Fibonacci number'''
if n in _cache:
return _cache[n]
elif n > 1:
return _cache.setdefault(n, mem_fib(n-1) + mem_fib(n-2))
return n
This is from my answer on the main Fibonacci in Python question: How to write the Fibonacci Sequence in Python
If you're allowed to use iteration instead of recursion, you should do this:
def fib():
a, b = 0, 1
while True: # First iteration:
yield a # yield 0 to start with and then
a, b = b, a + b # a will now be 1, and b will also be 1, (0 + 1)
usage:
>>> list(zip(range(10), fib()))
[(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13), (8, 21), (9, 34)]
If you just want to get the nth number:
def get_fib(n):
fib_gen = fib()
for _ in range(n):
next(fib_gen)
return next(fib_gen)
and usage
>>> get_fib(10)
55
fib_in_place(100)produces an immediate result of 354224848179261915075 on my machine. What happens on your machine?