52

I am appending rows to a pandas DataFrame within a for loop, but at the end the dataframe is always empty. I don't want to add the rows to an array and then call the DataFrame constructer, because my actual for loop handles lots of data. I also tried pd.concat without success. Could anyone highlight what I am missing to make the append statement work? Here's a dummy example:

import pandas as pd
import numpy as np

data = pd.DataFrame([])

for i in np.arange(0, 4):
    if i % 2 == 0:
        data.append(pd.DataFrame({'A': i, 'B': i + 1}, index=[0]), ignore_index=True)
    else:
        data.append(pd.DataFrame({'A': i}, index=[0]), ignore_index=True)

print data.head()

Empty DataFrame
Columns: []
Index: []
[Finished in 0.676s]
1

4 Answers 4

69

Every time you call append, Pandas returns a copy of the original dataframe plus your new row. This is called quadratic copy, and it is an O(N^2) operation that will quickly become very slow (especially since you have lots of data).

In your case, I would recommend using lists, appending to them, and then calling the dataframe constructor.

a_list = []
b_list = []
for data in my_data:
    a, b = process_data(data)
    a_list.append(a)
    b_list.append(b)
df = pd.DataFrame({'A': a_list, 'B': b_list})
del a_list, b_list

Timings

%%timeit
data = pd.DataFrame([])
for i in np.arange(0, 10000):
    if i % 2 == 0:
        data = data.append(pd.DataFrame({'A': i, 'B': i + 1}, index=[0]), ignore_index=True)
else:
    data = data.append(pd.DataFrame({'A': i}, index=[0]), ignore_index=True)
1 loops, best of 3: 6.8 s per loop

%%timeit
a_list = []
b_list = []
for i in np.arange(0, 10000):
    if i % 2 == 0:
        a_list.append(i)
        b_list.append(i + 1)
    else:
        a_list.append(i)
        b_list.append(None)
data = pd.DataFrame({'A': a_list, 'B': b_list})
100 loops, best of 3: 8.54 ms per loop
Sign up to request clarification or add additional context in comments.

1 Comment

Alright, so saving it to an array and then calling the DataFrame is actually faster then. Thanks!
52

You need to set the the variable data equal to the appended data frame. Unlike the append method on a python list the pandas append does not happen in place

import pandas as pd
import numpy as np

data = pd.DataFrame([])

for i in np.arange(0, 4):
    if i % 2 == 0:
        data = data.append(pd.DataFrame({'A': i, 'B': i + 1}, index=[0]), ignore_index=True)
    else:
        data = data.append(pd.DataFrame({'A': i}, index=[0]), ignore_index=True)

print(data.head())

   A    B
0  0  1.0
1  2  3.0
2  3  NaN

NOTE: This answer aims to answer the question as it was posed. It is not however the optimal strategy for combining large numbers of dataframes. For a more optimal solution have a look at Alexander's answer below

1 Comment

Thanks that works! Kinda silly that I didn't think of that.
2

When you use data.append(pd.DataFrame[['1','2'],['3','4']], ignore_index=True) the result must be assigned back to a dataframe. The result will contain the collated data eg.

data = data.append(pd.DataFrame([['1','2'],['3','4']])) <= use this in the loop

Comments

1

You can build your dataframe without a loop:

n = 4
data = pd.DataFrame({'A': np.arange(n)})
data['B'] = np.NaN
data.loc[data['A'] % 2 == 0, 'B'] = data['A'] + 1

For:

n = 10000

This is a bit faster:

%%timeit
data = pd.DataFrame({'A': np.arange(n)})
data['B'] = np.NaN
data.loc[data['A'] % 2 == 0, 'B'] = data['A'] + 1

100 loops, best of 3: 3.3 ms per loop

vs.

%%timeit
a_list = []
b_list = []
for i in np.arange(n):
    if i % 2 == 0:
        a_list.append(i)
        b_list.append(i + 1)
    else:
        a_list.append(i)
        b_list.append(None)
data1 = pd.DataFrame({'A': a_list, 'B': b_list})

100 loops, best of 3: 12.4 ms per loop

1 Comment

The question is not about efficiently creating the dummy dataframe example.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.