I'm trying to split a column in two, but I know there are null values in my data. Imagine this dataframe:
df = pd.DataFrame(['fruit: apple','vegetable: asparagus',None, 'fruit: pear'], columns = ['text'])
df
text
0 fruit: apple
1 vegetable: asparagus
2 None
3 fruit: pear
I'd like to split this into multiple columns like so:
df['cat'] = df['text'].apply(lambda x: 'unknown' if x == None else x.split(': ')[0])
df['value'] = df['text'].apply(lambda x: 'unknown' if x == None else x.split(': ')[1])
print df
text cat value
0 fruit: apple fruit apple
1 vegetable: asparagus vegetable asparagus
2 None unknown unknown
3 fruit: pear fruit pear
However, if I have the following df instead:
df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'], columns = ['text'])
splitting results in the following error:
df['cat'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[0])
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-159-8e5bca809635> in <module>()
1 df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'], columns = ['text'])
2 #df.columns = ['col_name']
----> 3 df['cat'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[0])
4 df['value'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[1])
C:\Python27\lib\site-packages\pandas\core\series.pyc in apply(self, func, convert_dtype, args, **kwds)
2158 values = lib.map_infer(values, lib.Timestamp)
2159
-> 2160 mapped = lib.map_infer(values, f, convert=convert_dtype)
2161 if len(mapped) and isinstance(mapped[0], Series):
2162 from pandas.core.frame import DataFrame
pandas\src\inference.pyx in pandas.lib.map_infer (pandas\lib.c:62187)()
<ipython-input-159-8e5bca809635> in <lambda>(x)
1 df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'], columns = ['text'])
2 #df.columns = ['col_name']
----> 3 df['cat'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[0])
4 df['value'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[1])
AttributeError: 'float' object has no attribute 'split'
How do I do the same split with NaN values? Is there generally a better way to apply a split function that ignores null values?
Imagine this wasn't a string example, instead if I had the following:
df = pd.DataFrame([2,4,6,8,10,np.nan,12], columns = ['numerics'])
df['numerics'].apply(lambda x: np.nan if pd.isnull(x) else x/2.0)
I feel like Series.apply should almost take an argument that instructs it to skip null rows and just output them as nulls. I haven't found a better generic way to do transformations to a series without having to manually avoid nulls.
df['cat'] = df['text'].apply(lambda x: 'unknown' if pd.isnull(x) else x.split(': ')[0])