I've got a table with close to 7 million rows in it. Here's the table structure
`CREATE TABLE `ERS_SALES_TRANSACTIONS` (
`saleId` int(12) NOT NULL AUTO_INCREMENT,
`ERS_COMPANY_CODE` int(3) DEFAULT NULL,
`SALE_SECTION` varchar(128) DEFAULT NULL,
`SALE_DATE` date DEFAULT NULL,
`SALE_STOCKAGE_EXACT` int(4) DEFAULT NULL,
`SALE_NET_AMOUNT` decimal(11,2) DEFAULT NULL,
`SALE_ABSOLUTE_CDATE` date DEFAULT NULL,
PRIMARY KEY (`saleId`),
KEY `index_location` (`ERS_COMPANY_CODE`),
KEY `idx-erscode-salesec` (`SALE_SECTION`,`ERS_COMPANY_CODE`) USING BTREE,
KEY `idx-saledate-section` (`SALE_DATE`,`SALE_SECTION`) USING BTREE
KEY `idx_quick_sales_transactions` (`ERS_COMPANY_CODE`,`SALE_SECTION`,`SALE_DATE`,`SALE_STOCKAGE_EXACT`,`SALE_NET_AMOUNT`)
) ENGINE=InnoDB;
This query is taking more than 7 secs to execute, is there any way to speed this up?
SELECT
A.SALE_SECTION,
SUM(IF(A.SALE_DATE BETWEEN '2016-01-16' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 0 AND 90, A.SALE_NET_AMOUNT, 0)) AS fs1_pd1_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-01-16' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 91 AND 180, A.SALE_NET_AMOUNT, 0)) AS fs2_pd1_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-01-16' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 181 AND 365, A.SALE_NET_AMOUNT, 0)) AS os1_pd1_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-01-16' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 366 AND 9999, A.SALE_NET_AMOUNT, 0)) AS os2_pd1_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-01-16' AND '2016-04-30', A.SALE_NET_AMOUNT, 0)) AS TOTAL_PD1_SALE,
SUM(IF(A.SALE_DATE BETWEEN '2016-04-01' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 0 AND 90, A.SALE_NET_AMOUNT, 0)) AS fs1_pd2_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-04-01' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 91 AND 180, A.SALE_NET_AMOUNT, 0)) AS fs2_pd2_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-04-01' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 181 AND 365, A.SALE_NET_AMOUNT, 0)) AS os1_pd2_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-04-01' AND '2016-04-30'
AND A.SALE_STOCKAGE_EXACT BETWEEN 366 AND 9999, A.SALE_NET_AMOUNT, 0)) AS os2_pd2_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-04-01' AND '2016-04-30', A.SALE_NET_AMOUNT, 0)) AS TOTAL_PD2_SALE,
SUM(IF(A.SALE_DATE BETWEEN '2016-05-01' AND '2016-05-31'
AND A.SALE_ABSOLUTE_CDATE BETWEEN '2016-03-01' AND '2016-05-31', A.SALE_NET_AMOUNT, 0)) AS fs1_achived_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-05-01' AND '2016-05-31'
AND A.SALE_ABSOLUTE_CDATE BETWEEN '2015-12-01' AND '2016-02-29', A.SALE_NET_AMOUNT, 0)) AS fs2_achived_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-05-01' AND '2016-05-31'
AND A.SALE_ABSOLUTE_CDATE BETWEEN '2015-06-01' AND '2015-11-30', A.SALE_NET_AMOUNT, 0)) AS os1_achived_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-05-01' AND '2016-05-31'
AND A.SALE_ABSOLUTE_CDATE BETWEEN '2006-12-26' AND '2015-05-31', A.SALE_NET_AMOUNT, 0)) AS os2_achived_sale,
SUM(IF(A.SALE_DATE BETWEEN '2016-05-01' AND '2016-05-31', A.SALE_NET_AMOUNT, 0)) AS Total_ACHIVED_SALE
FROM ERS_SALES_TRANSACTIONS A WHERE A.ERS_COMPANY_CODE = 48 GROUP BY A.SALE_SECTION
Here's Explain query
{
"data":
[
{
"id": 1,
"select_type": "SIMPLE",
"table": "A",
"type": "ref",
"possible_keys": "index_location,idx-erscode-salesec,idx-saledate-section",
"key": "index_location",
"key_len": "5",
"ref": "const",
"rows": 1411944,
"Extra": "Using where; Using temporary; Using filesort"
}
]
}
After adding composite index, time decreased to 4.03 sec. Here' the plan
{
"data":
[
{
"id": 1,
"select_type": "SIMPLE",
"table": "A",
"type": "ref",
"possible_keys": "index_location,idx-erscode-salesec,idx-saledate-section,idx_quick_sales_transactions",
"key_len": "5",
"key": "idx_quick_sales_transactions",
"ref": "const",
"rows": 1306058,
"Extra": "Using where"
}
]
}
SUM(IF(..., try (outer) self joins instead.index_locationis the index for ERS_COMPANY_CODE