is there something out there that does multidimensional hierarchical clustering?
I have looked in these places:
- http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
- http://scikit-learn.org/stable/modules/clustering.html
- http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html#scipy.cluster.hierarchy.dendrogram
but with no success so far
meaning: finding groups same way that was done with 2 dimensions, but with multiple dimensions
some code:
import pandas as pd
import numpy as np
set_of_values = pd.DataFrame(
[np.random.rand(10),
np.random.rand(10),
np.random.rand(10),
np.random.rand(10),
np.random.rand(10),],
index=['temp differential', 'power differential', 'cost', 'time','output'],
columns=range(10)).transpose()
print(set_of_values)
I'd like to find all the clusters for ('temp differential', 'power differential', 'cost', 'time','output'). not graphically as it is an hyperplane. ideally with an output like [all the groups]:
GROUP #1: (a,b,c,d,e), (a',b',c',d',e'), ... , (a'',b'',c'',d'',e'')
...
GROUP #n: ('a,'b,'c,'d,'e), ('a,'b,'c,'d,'e), ... , (''a,''b,''c,''d,''e)
given a threshold on the progressive 'clustering'. is it doable?
