I'm a bit lost as to how to proceed to achieve this. Normally with a linear model, when I perform linear regressions, I simply take my training data (x) and and my output data (y) and plot them using matplotlib. Now I have 3 features with and my output/observation (y). Can anyone guide me as to how to graph this kind of model using matplotlib? My goal is to fit a polynomial model and graph a polynomial using matplotlib.
%matplotlib inline
import sframe as frame
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
# Initalize SFrame
sales = frame.SFrame('kc_house_data.gl/')
# Separate data into test and training data
train_data,test_data = sales.random_split(.8,seed=0)
# Organize data into training and testing data
train_x = train_data[['sqft_living', 'bedrooms', 'bathrooms']].to_dataframe().values
train_y = train_data[['price']].to_dataframe().values
test_x = test_data[['sqft_living', 'bedrooms', 'bathrooms']].to_dataframe().values
test_y = test_data[['price']].to_dataframe().values
# Create a model using sklearn with multiple features
regr = linear_model.LinearRegression(fit_intercept=True, n_jobs=2)
# test predictions
regr.predict(train_x)
# Prepare to plot the data
Note:
The train_x variable contains my 3 features, and my train_y contains the output data. I use SFrame to contain the data. SFrame has the ability to convert itself into a dataframe (used in Pandas). Using the conversion I am able to grab the values.