13

I was wondering if there was a more efficient way to do the following operation.

# transforms datetime into timestamp in seconds
t = df.index.values.astype(np.int64) // 10**6

return jsonify(np.c_[t, df.open, df.high, df.low, df.close, df.volume].tolist())

where df is a dataframe containing an index that is a date, and at least (but not only) the following attributes: open, high, low, close, volume. I then output the newly created array as JSON with flask's jsonify. The code above works but it looks pretty inefficient to me any idea on how to make it nicer/more efficient.

0

1 Answer 1

24

you can use to_json() method:

In [88]: import pandas_datareader.data as web

In [89]: apl = web.get_data_yahoo('AAPL', '2016-07-05', '2016-07-07')

In [90]: apl
Out[90]:
                 Open       High        Low      Close    Volume  Adj Close
Date
2016-07-05  95.389999  95.400002  94.459999  94.989998  27705200  94.989998
2016-07-06  94.599998  95.660004  94.370003  95.529999  30949100  95.529999
2016-07-07  95.699997  96.500000  95.620003  95.940002  25139600  95.940002

I'll use json.dumps(..., indent=2) in order to make it nicer/readable:

In [91]: import json

orient='index'

In [98]: print(json.dumps(json.loads(apl.to_json(orient='index')), indent=2))
{
  "1467849600000": {
    "Close": 95.940002,
    "High": 96.5,
    "Open": 95.699997,
    "Adj Close": 95.940002,
    "Volume": 25139600,
    "Low": 95.620003
  },
  "1467676800000": {
    "Close": 94.989998,
    "High": 95.400002,
    "Open": 95.389999,
    "Adj Close": 94.989998,
    "Volume": 27705200,
    "Low": 94.459999
  },
  "1467763200000": {
    "Close": 95.529999,
    "High": 95.660004,
    "Open": 94.599998,
    "Adj Close": 95.529999,
    "Volume": 30949100,
    "Low": 94.370003
  }
}

orient='records' (reset index in order to make column Date visible):

In [99]: print(json.dumps(json.loads(apl.reset_index().to_json(orient='records')), indent=2))
[
  {
    "Close": 94.989998,
    "High": 95.400002,
    "Open": 95.389999,
    "Adj Close": 94.989998,
    "Volume": 27705200,
    "Date": 1467676800000,
    "Low": 94.459999
  },
  {
    "Close": 95.529999,
    "High": 95.660004,
    "Open": 94.599998,
    "Adj Close": 95.529999,
    "Volume": 30949100,
    "Date": 1467763200000,
    "Low": 94.370003
  },
  {
    "Close": 95.940002,
    "High": 96.5,
    "Open": 95.699997,
    "Adj Close": 95.940002,
    "Volume": 25139600,
    "Date": 1467849600000,
    "Low": 95.620003
  }
]

you can make use of the following to_json() parameters:

date_format : {‘epoch’, ‘iso’}

Type of date conversion. epoch = epoch milliseconds, iso` = ISO8601, default is epoch.

date_unit : string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

orient : string

The format of the JSON string

  • split : dict like {index -> [index], columns -> [columns], data -> [values]}
  • records : list like [{column -> value}, ... , {column -> value}]
  • index : dict like {index -> {column -> value}}
  • columns : dict like {column -> {index -> value}} values : just the values array
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.