As mentioned in the comments section to your question, debugging may provide a helpful way to understand what the code does. However, let me provide a high-level perspective of what your code does.
First of all, although there are no recursive calls to the function permute, the code your provided is effectively recursive, as all it does is keeping its own stack, instead of using the one provided by the memory manager of your OS. Specifically, the variable stack is keeping the recursive state, so to speak, that is passed from one recursive call to another. You could, and perhaps should, consider each iteration of the outer while loop in the permute function as a recursive call. If you do so, you will see that the outer while loop helps 'recursively' traverse each permutation of nums in a depth-first manner.
Noticing this, it's fairly easy to figure out what each 'recursive call' does. Basically, the variable permutation keeps the current permutation of nums which is being formed as while loop progresses. Variable permutations store all the permutations of nums that are found. As you may observe, permutations are updated only when len(permutation) is equal to len(nums) which can be considered as the base case of the recurrence relation that is being implemented using a custom stack. Finally, the inner while loop picks which element of nums to add to the current permutation(i.e. stored in variable permutation) being formed.
So that is about it, really. You can figure out what is exactly being done on the lines relevant to the maintenance of stack using a debugger, as suggested. As a final note, let me repeat that I, personally, would not consider this implementation to be non-recursive. It just so happens that, instead of using the abstraction provided by the OS, this recursive solution keeps its own stack. To provide a better understanding of how a proper non-recursive solution would be, you may observe the difference in recursive and iterative solutions to the problem of finding nth Fibonacci number provided below. As you can see, the non-recursive solution keeps no stack, and instead of dividing the problem into smaller instances of it(recursion) it builds up the solution from smaller solutions. (dynamic programming)
def recursive_fib(n):
if n == 0:
return 0
elif n == 1:
return 1
return recursive_fib(n-1) + recursive_fib(n-2)
def iterative_fib(n):
f_0 = 0
f_1 = 1
for i in range(3, n):
f_2 = f_1 + f_0
f_0 = f_1
f_1 = f_2
return f_1