4

How to do this in Numpy : Thank you!

Input :

A = np.array([0, 1, 2, 3]) 

B = np.array([[3, 2, 0], [0, 2, 1], [2, 3, 1], [3, 0, 1]]) 

Output :

result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]

in Python :

A = np.array([0 ,1 ,2 ,3]) 
B = np.array([[3 ,2 ,0], [0 ,2 ,1], [2 ,3 ,1], [3 ,0 ,1]]) 
result = []
for x ,  valA in enumerate (A) :
    inArray = []
    for y , valB in enumerate (B) : 
        if valA in valB:
            inArray.append (y)
    result.append (inArray)
print result

# result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]
0

2 Answers 2

5

Approach #1

Here's a NumPy vectorized approach using broadcasting -

R,C = np.where((A[:,None,None] == B).any(-1))
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)

Approach #2

Assuming A and B to hold positive numbers, we can consider those to represent indices on a 2D grid, such that B could be considered to hold the column indices on per row basis. Once that 2D grid corresponding to B is in place, we just need to consider only the columns that are intersected by A. Finally, we get the indices of True values in a such a 2D grid to give us R and C values. This should be much more memory-efficient.

Thus, the alternative approach would look something like this -

ncols = B.max()+1
nrows = B.shape[0]
mask = np.zeros((nrows,ncols),dtype=bool)
mask[np.arange(nrows)[:,None],B] = 1
mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
R,C = np.where(mask.T)
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)

Sample run -

In [43]: A
Out[43]: array([0, 1, 2, 3])

In [44]: B
Out[44]: 
array([[3, 2, 0],
       [0, 2, 1],
       [2, 3, 1],
       [3, 0, 1]])

In [45]: out
Out[45]: [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]

Runtime test

Scaling up the dataset sizes by 100x, here's a quick runtime test result -

In [85]: def index_1din2d(A,B):
    ...:     R,C = np.where((A[:,None,None] == B).any(-1))
    ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
    ...:     return out
    ...: 
    ...: def index_1din2d_initbased(A,B):
    ...:     ncols = B.max()+1
    ...:     nrows = B.shape[0]
    ...:     mask = np.zeros((nrows,ncols),dtype=bool)
    ...:     mask[np.arange(nrows)[:,None],B] = 1
    ...:     mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
    ...:     R,C = np.where(mask.T)
    ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
    ...:     return out
    ...: 

In [86]: A = np.unique(np.random.randint(0,10000,(400)))
    ...: B = np.random.randint(0,10000,(400,300))
    ...: 

In [87]: %timeit [np.where((B == x).sum(axis = 1))[0] for x in A]
1 loop, best of 3: 161 ms per loop # @Psidom's soln

In [88]: %timeit index_1din2d(A,B)
10 loops, best of 3: 91.5 ms per loop

In [89]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 33.4 ms per loop

Further performance-boost!

Well, alternatively we can create the 2D grid in the second approach in a transposed way. The idea is to avoid the transpose in R,C = np.where(mask.T), which seemed like the bottleneck. So, a modified version of the second approach and the associated runtimes would look something like this -

In [135]: def index_1din2d_initbased_v2(A,B):
     ...:     nrows = B.max()+1
     ...:     ncols = B.shape[0]
     ...:     mask = np.zeros((nrows,ncols),dtype=bool)
     ...:     mask[B,np.arange(ncols)[:,None]] = 1
     ...:     mask[~np.in1d(np.arange(mask.shape[0]),A)] = 0
     ...:     R,C = np.where(mask)
     ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
     ...:     return out
     ...: 

In [136]: A = np.unique(np.random.randint(0,10000,(400)))
     ...: B = np.random.randint(0,10000,(400,300))
     ...: 

In [137]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 57.5 ms per loop

In [138]: %timeit index_1din2d_initbased_v2(A,B)
10 loops, best of 3: 25.9 ms per loop
Sign up to request clarification or add additional context in comments.

Comments

1

An option with a combination of numpy and list-comprehension:

import numpy as np
[np.where((B == x).sum(axis = 1))[0] for x in A]
# [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.