0

I need to reduce the running time for quad() in python (I am integrating some thousands integrals). I found a similar question in here where they suggested to do several integrations and add the partial values. However that does not improve performance. Any thoughts? here is a simple example:

import numpy as np                      
from scipy.integrate import quad
from scipy.stats import norm
import time

funcB = lambda x: norm.pdf(x,0,1)

start = time.time()
good_missclasified,_ = quad(funcB, 0,3.3333)
stop = time.time()
time_elapsed = stop - start 
print ('quad : ' + str(time_elapsed))

start = time.time()
num = np.linspace(0,3.3333,10)
Lv = []
last, lastG = 0, 0
for g in num:
  Lval,x = quad(funcB, lastG, g)
  last, lastG = last + Lval, g
  Lv.append(last)
Lv = np.array(Lv)
stop = time.time()

time_elapsed = stop - start 
print ('10 int : ' + str(time_elapsed))
print(good_missclasified,Lv[9])

1 Answer 1

2

quadpy (a project of mine) is vectorized and can integrate a function over many domains (e.g., intervals) at once. You do have to choose your own integration method though.

import numpy
import quadpy

a = 0.0
b = 1.0
n = 100
start_points = numpy.linspace(a, b, n, endpoint=False)
h = (b-a) / n
end_points = start_points + h
intervals = numpy.array([start_points, end_points])

scheme = quadpy.line_segment.gauss_kronrod(3)
vals = scheme.integrate(numpy.exp, intervals)
print(vals)
[0.10050167 0.10151173 0.10253194 0.1035624  0.10460322 0.1056545
 0.10671635 0.10778886 0.10887216 0.10996634 0.11107152 0.11218781
 0.11331532 0.11445416 0.11560444 0.11676628 0.1179398  0.11912512
 0.12032235 0.12153161 0.12275302 0.12398671 0.12523279 0.1264914
 0.12776266 0.1290467  0.13034364 0.13165362 0.13297676 0.1343132
 0.13566307 0.1370265  0.13840364 0.13979462 0.14119958 0.14261866
 0.144052   0.14549975 0.14696204 0.14843904 0.14993087 0.15143771
 0.15295968 0.15449695 0.15604967 0.157618   0.15920208 0.16080209
 0.16241818 0.16405051 0.16569924 0.16736455 0.16904659 0.17074554
 0.17246156 0.17419482 0.17594551 0.17771379 0.17949985 0.18130385
 0.18312598 0.18496643 0.18682537 0.188703   0.1905995  0.19251505
 0.19444986 0.19640412 0.19837801 0.20037174 0.20238551 0.20441952
 0.20647397 0.20854907 0.21064502 0.21276204 0.21490033 0.21706012
 0.21924161 0.22144502 0.22367058 0.22591851 0.22818903 0.23048237
 0.23279875 0.23513842 0.2375016  0.23988853 0.24229945 0.2447346
 0.24719422 0.24967857 0.25218788 0.25472241 0.25728241 0.25986814
 0.26247986 0.26511783 0.2677823  0.27047356]
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.