2

I have a numpy boolean 2D array that represents a grayscale image which is essentially an unfilled shape (triangle, square, circle) consisting of True for white pixels, and False for black pixels. I would like to add a black fill by modifying the white pixels to black pixels.

array([[True, True, True, False, False, False, False, False, True, True, True],
       [True, True, True, False,  True,  True,  True, False, True, True, True],
       [True, True, True, False,  True,  True,  True, False, True, True, True],
       [True, True, True, False,  True,  True,  True, False, True, True, True],
       [True, True, True, False, False, False, False, False, True, True, True]])

(The 9 True values in a square in the middle of this array should become False.)

Is there a numpy slice method that will make this easy/fast? Something that I can modify all Trues anytime there's a False followed by a True until the next instance of a False?

1
  • Could there be multiple objects along a row? Commented Sep 27, 2016 at 19:50

2 Answers 2

1

Here one idea that's easy to implement and should perform reasonably quickly.

I'll use 0s and 1s so it's a little clearer to look at.

Here's the starting array:

>>> a
array([[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
       [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
       [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1]])

Accumulate left-to-right using np.logical_and.accumulate, flip left-to-right, do the same again, flip back, and the "or" the two arrays together:

>>> andacc = np.logical_and.accumulate
>>> (andacc(a, axis=1) | andacc(a[:, ::-1], axis=1)[:, ::-1]).astype(int)
array([[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1]])

(Leave out .astype(int) to keep a boolean array instead of 0s and 1s.)

Here's a triangle:

>>> b
array([[1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1],
       [1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1],
       [1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1],
       [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]])

>>> (andacc(b, axis=1) | andacc(b[:, ::-1], axis=1)[:, ::-1]).astype(int)
array([[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1],
       [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1],
       [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
Sign up to request clarification or add additional context in comments.

Comments

0

Based on your logic, you can replace all values between the first False and the last False with False:

def mutate(A):
    ind = np.where(~A)[0]
    if len(ind) != 0:
        A[ind.min():ind.max()] = False
    return A


np.apply_along_axis(mutate, 1, arr)

# array([[ True,  True,  True, False, False, False, False, False,  True,
#          True,  True],
#        [ True,  True,  True, False, False, False, False, False,  True,
#          True,  True],
#        [ True,  True,  True, False, False, False, False, False,  True,
#          True,  True],
#        [ True,  True,  True, False, False, False, False, False,  True,
#          True,  True],
#        [ True,  True,  True, False, False, False, False, False,  True,
#          True,  True]], dtype=bool)

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.