Suppose we are given dataset ("DATA") like :
YEAR | FIRST NAME | LAST NAME | VARIABLES
2008 | JOY | ANDERSON | spark|python|scala; 45;w/o sports;w datascience
2008 | STEVEN | JOHNSON | Spark|R; 90|56
2006 | NIHA | DIVA | w/o sports
and we have another dataset ("RESULT") like :
YEAR | FIRST NAME | LAST NAME
1992 | EMMA | CENA
2008 | JOY | ANDERSON
2008 | STEVEN | ANDERSON
2006 | NIHA | DIVA
and so on.
The output should be ("RESULT") :
YEAR | FIRST NAME | LAST NAME | SUBJECT | SCORE | SPORTS | DATASCIENCE
1992 | EMMA | CENA | | | |
2008 | JOY | ANDERSON | SPARK | 45 | FALSE | TRUE
2008 | JOY | ANDERSON | PYTHON | 45 | FALSE | TRUE
2008 | JOY | ANDERSON | SCALA | 45 | FALSE | TRUE
2008 | STEVEN | ANDERSON | | | |
2006 | NIHA | DIVA | | | FALSE |
2008 | STEVEN | JOHNSON | SPARK | 90 | |
2008 | STEVEN | JOHNSON | SPARK | 56 | |
2008 | STEVEN | JOHNSON | R | 90 | |
2008 | STEVEN | JOHNSON | R | 56 | |
and so on.
Please note that there are some rows in DATA which are not present in RESULT and vice-versa. For eg - "2008,STEVEN,JOHNSON" is not present in RESULT but is present in DATA. And the entries should be made in RESULT dataset. The columns {SUBJECT, SCORE, SPORTS, DATASCIENCE} are made by my intuition that "spark" refers to the SUBJECT and so on. Hope you understand my query. And I am using spark-shell with spark dataframes. Note that "Spark" and "spark" should be considered as same.
joinand dataframes, there are plenty of examples