0

I used the google maps api to get data on US National Parks. I am trying to normalize this data into a pandas dataframe.

However this is not working: table = pd.io.json.json_normalize(park_json) And produces a table like this: enter image description here

I initially tried to normalize only the results column but it gives this error: TypeError: list indices must be integers or slices, not str

I then tried: `new_table = pd.read_json((table['results']).to_json(), orient='index')' but it errors: ValueError: arrays must all be same length

Any suggestions? Thank you!!!

Example json: {'status': 'OK', 'results': [{'formatted_address': 'Acadia National Park, Mt Desert, ME 04660, USA', 'types': ['establishment', 'park', 'point_of_interest'], 'place_id': 'ChIJJSmiDrKjrkwRhFVV_A4i32I', 'address_components': [{'types': ['establishment', 'point_of_interest'], 'long_name': 'Acadia National Park', 'short_name': 'Acadia National Park'}, {'types': ['locality', 'political'], 'long_name': 'Mount Desert', 'short_name': 'Mt Desert'}, {'types': ['administrative_area_level_2', 'political'], 'long_name': 'Hancock County', 'short_name': 'Hancock County'}, {'types': ['administrative_area_level_1', 'political'], 'long_name': 'Maine', 'short_name': 'ME'}, {'types': ['country', 'political'], 'long_name': 'United States', 'short_name': 'US'}, {'types': ['postal_code'], 'long_name': '04660', 'short_name': '04660'}], 'geometry': {'location_type': 'APPROXIMATE', 'location': {'lng': -68.2733346, 'lat': 44.3385559}, 'viewport': {'southwest': {'lng': -68.4344785, 'lat': 44.2350589}, 'northeast': {'lng': -68.1591412, 'lat': 44.40370240000001}}}}]} {'status': 'OK', 'results': [{'formatted_address': 'Adams National Historical Park, 1250 Hancock St, Quincy, MA 02169, USA', 'types': ['establishment', 'museum', 'park', 'point_of_interest'], 'place_id': 'ChIJbbPB5rB844kR7hOzzjBr4Cs', 'address_components': [{'types': ['establishment', 'point_of_interest'], 'long_name': 'Adams National Historical Park', 'short_name': 'Adams National Historical Park'}, {'types': ['street_number'], 'long_name': '1250', 'short_name': '1250'}, {'types': ['route'], 'long_name': 'Hancock Street', 'short_name': 'Hancock St'}, {'types': ['locality', 'political'], 'long_name': 'Quincy', 'short_name': 'Quincy'}, {'types': ['administrative_area_level_2', 'political'], 'long_name': 'Norfolk County', 'short_name': 'Norfolk County'}, {'types': ['administrative_area_level_1', 'political'], 'long_name': 'Massachusetts', 'short_name': 'MA'}, {'types': ['country', 'political'], 'long_name': 'United States', 'short_name': 'US'}, {'types': ['postal_code'], 'long_name': '02169', 'short_name': '02169'}], 'geometry': {'location_type': 'APPROXIMATE', 'location': {'lng': -71.00379099999999, 'lat': 42.252297}, 'viewport': {'southwest': {'lng': -71.00513998029149, 'lat': 42.2509480197085}, 'northeast': {'lng': -71.00244201970848, 'lat': 42.25364598029149}}}}]}

2
  • What pieces of that data do you want? the geometry or just the address_components? Commented Nov 21, 2016 at 22:22
  • the geometry, thanks! Commented Nov 22, 2016 at 3:03

1 Answer 1

1

With properly structured json, you can do this:

import json
import pandas

df = pandas.DataFrame(json.load(open('example.json', 'r')).items())

The top-level json property names will be in column 0 with the corresponding values in column 1. This also works for any json object nested within the original object. I couldn't get it to work with your json sample but it does work with the first example json here: http://jsonapi.org/examples/

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.