First of all, name of array A is associated to address of (pointer at) the first item in the array.
So why exactly is (Aptr - A) giving me the number of elements?
Because according to rules address arithmetic subtraction operation (also +, and similar) is performed based on the data type.
I mean, that compiler operating with int* makes ++, --, addition, subtraction an integer, etc. adds addresses needed for shifting to next/previous item.
If you really want to see how many bytes are located between addresses, just convert addresses to int before making subtraction:
cout << endl << "Address difference is " << int(Aptr) - int(A) << endl;
You can try that with different data types as follows:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
int A[5];
short B[5];
unsigned char C[5];
cout << "Array (data type) | Syze of array | Size of item | Item distanse | Bytes distance" << endl;
cout << "A (int) :" << setw(10)
<< sizeof(A) << setw(15)
<< sizeof(A[0]) << setw(15)
<< &A[4] - A << setw(15)
<< int(&A[4]) - int(A) << endl;
cout << "B (short) :" << setw(10)
<< sizeof(B) << setw(15)
<< sizeof(B[0]) << setw(15)
<< &B[4] - B << setw(15)
<< int(&B[4]) - int(B) << endl;
cout << "C (un.char) :" << setw(10)
<< sizeof(C) << setw(15)
<< sizeof(C[0]) << setw(15)
<< &C[4] - C << setw(15)
<< int(&C[4]) - int(C) << endl;
system("pause");
return 0;
}
UPDATE
To be better prepared for your exam, consider the following example with pointers:
#include <iostream>
using namespace std;
int main()
{
int A[5] = {0}; // all items now are 0
int * P = A + 2; // the same as P = &A[2];
*P = 33; // writing to item A[2];
cout << A[2] << endl; // just to check in usual way
cout << *(A + 2) << endl; // using A as a pointer
cout << *(2 + A) << endl; // almost the same to previous
cout << 2[A] << endl; // quite strange, but it works
cout << 0[P] << endl; // and this is the same
return 0;
}
You must understand that 0[P] means for compiler *(0 + P), as well as 2[A] means - *(2 + A), but you should not write in your program in such style (exceptions are only cases when you want to confuse a reader).
And one more important thing - difference between array and pointer - are shown in the following example:
int A[] = {1, 2, 3, 4, 5};
int *P = A;
cout << "A = " << A << endl;
cout << "P = " << P << endl;
cout << "size of A = " << sizeof(A) << endl;
cout << "size of P = " << sizeof(P) << endl;
even if the addresses (vaules A and P) are equal, compiler works with array (A) in a different way than with pointer: sizeof(A) means memory allocated for whole array (5 items of sizeof(int) each), but sizeof(P) means memory allocated for data type int * (pointer to int). So, sizeof(P) depends only on compiler and OS platform (e.g. pointer can be 32-bit or 64-bit), but sizeof(A) depends on size of item (int may be not 32 bits) and NUMBER OF ITEMS in the array.
And you can "go to the next item" with pointer:
P++;
cout << *P << endl;
but you are not able to do:
A++;
because A is not variable of pointer type (it is just similar in sense of "address of the first item"), and compiler will say you something like:
error : '++' needs l-value