Here's a vectorized approach using cumulative summation -
def ranges(nv, start = 1):
shifts = nv.cumsum()
id_arr = np.ones(shifts[-1], dtype=int)
id_arr[shifts[:-1]] = -nv[:-1]+1
id_arr[0] = start # Skip if we know the start of ranges is 1 already
return id_arr.cumsum()
Sample runs -
In [23]: nv
Out[23]: array([3, 2, 5, 7])
In [24]: ranges(nv, start=0)
Out[24]: array([0, 1, 2, 0, 1, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6])
In [25]: ranges(nv, start=1)
Out[25]: array([1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7])
Runtime test -
In [62]: nv = np.random.randint(3, 10+1, size=(100000,))
In [63]: %timeit your_func(nv) # @MSeifert's solution
10 loops, best of 3: 129 ms per loop
In [64]: %timeit ranges(nv)
100 loops, best of 3: 5.54 ms per loop
np.rangeshould benp.arange, I believe.np.r_[:4, :5, :3, :6]is a nice compact way of generating such an array 'by-hand'. It doesn't offer any advantages if starting with anvarray.