2

I have a following dataframe:

In [25]: df1
Out[25]: 
          a         b
0  0.752072  0.813426
1  0.868841  0.354665
2  0.944651  0.745505
3  0.485834  0.163747
4  0.001487  0.820176
5  0.904039  0.136355
6  0.572265  0.250570
7  0.514955  0.868373
8  0.195440  0.484160
9  0.506443  0.523912

Now I want to create another column df1['c'] whose values would be maximum among df1['a'] and df1['b']. Thus, I would like to have this as an output:

In [25]: df1
Out[25]: 
          a         b        c
0  0.752072  0.813426 0.813426
1  0.868841  0.354665 0.868841
2  0.944651  0.745505 0.944651
3  0.485834  0.163747 0.485834
4  0.001487  0.820176 0.820176

I tried :

In [23]: df1['c'] = np.where(max(df1['a'], df1['b'], df1['a'], df1['b'])

However, this throws a syntax error. I don't see any way in which I can do this in pandas. My actual dataframe is way too complex and so I would like to have a generic solution for this. Any ideas?

1 Answer 1

5

You can use Series.where:

df['c'] = df.b.where(df.a < df.b, df.a)
print (df)
          a         b         c
0  0.752072  0.813426  0.813426
1  0.868841  0.354665  0.868841
2  0.944651  0.745505  0.944651
3  0.485834  0.163747  0.485834
4  0.001487  0.820176  0.820176
5  0.904039  0.136355  0.904039
6  0.572265  0.250570  0.572265
7  0.514955  0.868373  0.868373
8  0.195440  0.484160  0.484160
9  0.506443  0.523912  0.523912

Solution with numpy.where:

df['c'] = np.where(df['a'] > df['b'], df['a'], df['b'])
print (df)
          a         b         c
0  0.752072  0.813426  0.813426
1  0.868841  0.354665  0.868841
2  0.944651  0.745505  0.944651
3  0.485834  0.163747  0.485834
4  0.001487  0.820176  0.820176
5  0.904039  0.136355  0.904039
6  0.572265  0.250570  0.572265
7  0.514955  0.868373  0.868373
8  0.195440  0.484160  0.484160
9  0.506443  0.523912  0.523912

Or simplier is find max:

df['c'] = df[['a','b']].max(axis=1)
print (df)
          a         b         c
0  0.752072  0.813426  0.813426
1  0.868841  0.354665  0.868841
2  0.944651  0.745505  0.944651
3  0.485834  0.163747  0.485834
4  0.001487  0.820176  0.820176
5  0.904039  0.136355  0.904039
6  0.572265  0.250570  0.572265
7  0.514955  0.868373  0.868373
8  0.195440  0.484160  0.484160
9  0.506443  0.523912  0.523912
Sign up to request clarification or add additional context in comments.

1 Comment

Worked! I didn't know where method in pandas. :)

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.