18

I have three same-size square matrices in NumPy. I would like to combine these to a block-diagonal matrix.

Example:

a1 = np.array([[1,1,1],[1,1,1],[1,1,1]])
a2 = np.array([[2,2,2],[2,2,2],[2,2,2]])
a3 = np.array([[3,3,3],[3,3,3],[3,3,3]])

r = np.array([[1,1,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,0,0,0,3,3,3],[0,0,0,0,0,0,3,3,3],[0,0,0,0,0,0,3,3,3]])

What is the best way to do this?

4 Answers 4

22

scipy.linalg has a block_diag function to do this automatically

>>> a1 = np.array([[1,1,1],[1,1,1],[1,1,1]])
>>> a2 = np.array([[2,2,2],[2,2,2],[2,2,2]])
>>> a3 = np.array([[3,3,3],[3,3,3],[3,3,3]])
>>> import scipy.linalg
>>> scipy.linalg.block_diag(a1, a2, a3)
array([[1, 1, 1, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 2, 2, 2, 0, 0, 0],
       [0, 0, 0, 2, 2, 2, 0, 0, 0],
       [0, 0, 0, 2, 2, 2, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 3, 3, 3],
       [0, 0, 0, 0, 0, 0, 3, 3, 3],
       [0, 0, 0, 0, 0, 0, 3, 3, 3]])
>>> r = np.array([[1,1,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,0,0], [0,0,0,2,2,2,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,0,0,0,3,3,3],[0,0,0,0,0,0,3,3,3],[0,0,0,0,0,0,3,3,3]])
>>> (scipy.linalg.block_diag(a1, a2, a3)  == r).all()
True
Sign up to request clarification or add additional context in comments.

2 Comments

It would be nice if this were available in numpy (without requiring another dependency).
scipy is built on top of numpy. I think scipy.array should work in substantially the same fashion as numpy.array.
4

Since these answers, numpy has added a block function

In [695]: A=np.arange(1,10).reshape(3,3)
In [696]: B=np.arange(10,14).reshape(2,2)
In [698]: C = np.zeros((3,2),int)

In [699]: np.block([[A,C],[C.T,B]])
Out[699]: 
array([[ 1,  2,  3,  0,  0],
       [ 4,  5,  6,  0,  0],
       [ 7,  8,  9,  0,  0],
       [ 0,  0,  0, 10, 11],
       [ 0,  0,  0, 12, 13]])

Comments

3

If you want this particular array r, perhaps the easiest way would be:

r=np.kron(np.diag([1,2,3]),np.ones((3,3),dtype='int'))

If a1, a2, a3 can be arbitrary 2-dimensional arrays, then perhaps the easiest way is:

a1=np.asmatrix(a1)
a2=np.asmatrix(a2)
a3=np.asmatrix(a3)
z=np.asmatrix(np.zeros((3,3)))
r=np.asarray(np.bmat('a1, z, z; z, a2, z; z, z, a3'))

An alternative slower method is:

r=(np.kron([[1,0,0],[0,0,0],[0,0,0]],a1)   
   +np.kron([[0,0,0],[0,1,0],[0,0,0]],a2)
   +np.kron([[0,0,0],[0,0,0],[0,0,1]],a3))

Comments

2

For those that want to make diagonal matrix containing M for N times:

from scipy.linalg import block_diag

M = np.array([[1,1,1],[1,1,1],[1,1,1]])
N = 3

block_diag(*(M for _ in range(N)))

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.