I was trying to do matrix dot product and transpose with Numpy, and I found array can do many things matrix can do, such as dot product, point wise product, and transpose.
When I have to create a matrix, I have to create an array first.
example:
import numpy as np
array = np.ones([3,1])
matrix = np.matrix(array)
Since I can do matrix transpose and dot product in array type, I don't have to convert array into matrix to do matrix operations.
For example, the following line is valid, where A is an ndarray :
dot_product = np.dot(A.T, A )
The previous matrix operation can be expressed with matrix class variable A
dot_product = A.T * A
The operator * is exactly the same as point-wise product for ndarray. Therefore, it makes ndarray and matrix almost indistinguishable and causes confusions.
The confusion is a serious problem, as said in REP465
Writing code using numpy.matrix also works fine. But trouble begins as soon as we try to integrate these two pieces of code together. Code that expects an ndarray and gets a matrix, or vice-versa, may crash or return incorrect results. Keeping track of which functions expect which types as inputs, and return which types as outputs, and then converting back and forth all the time, is incredibly cumbersome and impossible to get right at any scale.
It will be very tempting if we stick to ndarray and deprecate matrix and support ndarray with matrix operation methods such as .inverse(), .hermitian(), outerproduct(), etc, in the future.
The major reason I still have to use matrix class is that it handles 1d array as 2d array, so I can transpose it.
It is very inconvenient so far how I transpose 1d array, since 1d array of size n has shape (n,) instead of (1,n). For example, if I have to do the inner product of two arrays :
A = [[1,1,1],[2,2,2].[3,3,3]]
B = [[1,2,3],[1,2,3],[1,2,3]]
np.dot(A,B) works fine, but if
B = [1,1,1]
,its transpose is still a row vector.
I have to handle this exception when the dimensions of input variable is unknown.
I hope this help some people with the same trouble, and hope to know if there is any better way to handle matrix operation like in Matlab, especially with 1d array. Thanks.