This is a straightforward question and answer about using minimize. In case other users need something more concrete, here's a simple example.
A generalized quadratic equation:
In [282]: def fun(x, a,b,c):
...: return a*x**2 + b*x + c
In [283]: optimize.minimize(fun, 10, args=(1,0,0))
Out[283]:
fun: 1.7161984122524196e-15
hess_inv: array([[ 0.50000001]])
jac: array([ -6.79528891e-08])
message: 'Optimization terminated successfully.'
nfev: 15
nit: 4
njev: 5
status: 0
success: True
x: array([ -4.14270251e-08])
In [284]: optimize.minimize(fun, 10, args=(1,1,1))
Out[284]:
fun: 0.7500000000000221
hess_inv: array([[ 0.49999999]])
jac: array([ 3.12924385e-07])
message: 'Optimization terminated successfully.'
nfev: 12
nit: 2
njev: 4
status: 0
success: True
x: array([-0.49999985])
The function could take arrays as input as well, but still needs to return a single (scalar) value:
In [289]: optimize.minimize(fun, [10,10,10], args=(np.array([1,2,3]), 1, 1))
Out[289]:
fun: 2.541666666667115
hess_inv: array([[ 0.50021475, -0.00126004, 0.00061239],
[-0.00126004, 0.25822101, -0.00259327],
[ 0.00061239, -0.00259327, 0.16946887]])
jac: array([ -8.94069672e-08, 4.47034836e-07, -2.20537186e-06])
message: 'Optimization terminated successfully.'
nfev: 55
nit: 9
njev: 11
status: 0
success: True
x: array([-0.50000006, -0.2499999 , -0.16666704])
In [286]: def fun(x, a,b,c):
...: return (a*x**2 + b*x + c).sum()
It's a good idea to make sure the function runs with the proposed x0 and args, e.g.
In [291]: fun(np.array([10,10,10]), np.array([1,2,3]), 1, 1)
Out[291]: 633
If you can't call the objective function, or are confused as to how its arguments work, minimize isn't a magic bullet. This minimization is only as good as your understanding of the objective function.
a, b, cvalues usingfunctools.partial?minimizeactually allows me to pass it parameters. Thanks!partialis great when you need it, but I don't know SciPy, so it was only a suggestion. Obviously, Liteye's answer is the proper way to do this. :)