116

I am using the following code to create a data frame from a list:

test_list = ['a','b','c','d']
df_test = pd.DataFrame.from_records(test_list, columns=['my_letters'])
df_test

The above code works fine. Then I tried the same approach for another list:

import pandas as pd
q_list = ['112354401', '116115526', '114909312', '122425491', '131957025', '111373473']
df1 = pd.DataFrame.from_records(q_list, columns=['q_data'])
df1

But it gave me the following errors this time:

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-24-99e7b8e32a52> in <module>()
      1 import pandas as pd
      2 q_list = ['112354401', '116115526', '114909312', '122425491', '131957025', '111373473']
----> 3 df1 = pd.DataFrame.from_records(q_list, columns=['q_data'])
      4 df1

/usr/local/lib/python3.4/dist-packages/pandas/core/frame.py in from_records(cls, data, index, exclude, columns, coerce_float, nrows)
   1021         else:
   1022             arrays, arr_columns = _to_arrays(data, columns,
-> 1023                                              coerce_float=coerce_float)
   1024 
   1025             arr_columns = _ensure_index(arr_columns)

/usr/local/lib/python3.4/dist-packages/pandas/core/frame.py in _to_arrays(data, columns, coerce_float, dtype)
   5550         data = lmap(tuple, data)
   5551         return _list_to_arrays(data, columns, coerce_float=coerce_float,
-> 5552                                dtype=dtype)
   5553 
   5554 

/usr/local/lib/python3.4/dist-packages/pandas/core/frame.py in _list_to_arrays(data, columns, coerce_float, dtype)
   5607         content = list(lib.to_object_array(data).T)
   5608     return _convert_object_array(content, columns, dtype=dtype,
-> 5609                                  coerce_float=coerce_float)
   5610 
   5611 

/usr/local/lib/python3.4/dist-packages/pandas/core/frame.py in _convert_object_array(content, columns, coerce_float, dtype)
   5666             # caller's responsibility to check for this...
   5667             raise AssertionError('%d columns passed, passed data had %s '
-> 5668                                  'columns' % (len(columns), len(content)))
   5669 
   5670     # provide soft conversion of object dtypes

AssertionError: 1 columns passed, passed data had 9 columns

Why would the same approach work for one list but not another? Any idea what might be wrong here? Thanks a lot!

7 Answers 7

155

DataFrame.from_records treats string as a character list. so it needs as many columns as length of string.

You could simply use the DataFrame constructor.

In [3]: pd.DataFrame(q_list, columns=['q_data'])
Out[3]:
      q_data
0  112354401
1  116115526
2  114909312
3  122425491
4  131957025
5  111373473
Sign up to request clarification or add additional context in comments.

Comments

50
In[20]: test_list = [['a','b','c'], ['AA','BB','CC']]

In[21]: pd.DataFrame(test_list, columns=['col_A', 'col_B', 'col_C'])
Out[21]: 
  col_A col_B col_C
0     a     b     c
1    AA    BB    CC

In[22]: pd.DataFrame(test_list, index=['col_low', 'col_up']).T
Out[22]: 
  col_low col_up
0       a     AA
1       b     BB
2       c     CC

Comments

36

If you want to create a DataFrame from multiple lists you can simply zip the lists. This returns a 'zip' object. So you convert back to a list.

mydf = pd.DataFrame(list(zip(lstA, lstB)), columns = ['My List A', 'My List B'])

1 Comment

I guess this approach is the most commonly used
1

You could also take the help of numpy.

import numpy as np
df1 = pd.DataFrame(np.array(q_list),columns=['q_data'])

Comments

1

You can follow this code to convert a list to pandas dataframe. I'm here using 2 variables:

Our input list is:

[
  [1, 15],
  [2, 11],
  [3, 11],
  [4, 20]
]

Code:

from typing import List
import pandas as pd

def createDataframe(student_data: List[List[int]]) -> pd.DataFrame: 
    df = pd.DataFrame(student_data, columns=['student_id', 'age'])
    
    return df

df = createDataframe([[1,15],[2,11],[3,11],[4,20]])
# print("createDataframe: ", df)
# print("type of output: ", type(df))

Output:

+------------+-----+
| student_id | age |
+------------+-----+
| 1          | 15  |
| 2          | 11  |
| 3          | 11  |
| 4          | 20  |
+------------+-----+

Comments

-1

just using concat method

test_list = ['a','b','c','d']
pd.concat(test_list )

1 Comment

You cannot concatenate a built-in List object to a Pandas DataFrame
-1

You can create a Pandas Data Frame using multiple lists. All the lists must be the same length.

list1 = [0,1,2]

list2 = ['a','b','c']

df = pd.DataFrame({'list1_name':list1, 'list2_name':list2},columns=['list1_name', 'list2_name'])

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.