1

I have an issue during predict inside of Pipelines flow with custom classes per each pipe step.

class MyFeatureSelector():
    def __init__(self, features=5, method='pca'):
        self.features = features
        self.method = method

    def fit(self, X, Y):
        return self

    def transform(self, X, Y=None):
        try:
            if self.features < X.shape[1]:
                if self.method == 'pca':
                    selector = PCA(n_components=self.features)
                elif self.method == 'rfe':
                    selector = RFE(estimator=LinearRegression(n_jobs=-1),
                                   n_features_to_select=self.features,
                                   step=1)
                selector.fit(X, Y)
                return selector.transform(X)
        except Exception as err:
            print('MyFeatureSelector.transform(): {}'.format(err))
        return X

    def fit_transform(self, X, Y=None):
        self.fit(X, Y)
        return self.transform(X, Y)


model = Pipeline([
    ("DATA_CLEANER", MyDataCleaner(demo='', mode='strict')),
    ("DATA_ENCODING", MyEncoder(encoder_name='code')),
    ("FEATURE_SELECTION", MyFeatureSelector(features=15, method='rfe')),
    ("HUBER_MODELLING", HuberRegressor())
])

So, code above works very good here:

 model.fit(X, _Y)

But I have an error here

 prediction = model.predict(XT)

ERROR: shapes (672,107) and (15,) not aligned: 107 (dim 1) != 15 (dim 0)

Debug shows that issue here: selector.fit(X, Y) because new instance of MyFeatureSelector was created during predict() step and Y is not exists at that moment.

Where was I wrong?

2
  • Yes. Because the pipeline will call fit() during training and only transform() during predict. And you are calling selector.fit() inside transform(), which will change the data Commented Apr 5, 2017 at 13:42
  • First check the shapes of X, XT and Y_. Show the full stack trace of error. Then I may able to suggest changes in your custom class. Commented Apr 5, 2017 at 13:43

1 Answer 1

3

Working version posted below:

class MyFeatureSelector():
    def __init__(self, features=5, method='pca'):
        self.features = features
        self.method = method
        self.selector = None
        self.init_selector()


    def init_selector():
        if self.method == 'pca':
            self.selector = PCA(n_components=self.features)
        elif self.method == 'rfe':
        self.selector = RFE(estimator=LinearRegression(n_jobs=-1),
                               n_features_to_select=self.features,
                               step=1)

    def fit(self, X, Y):
       return self

    def transform(self, X, Y=None):
        try:
            if self.features < X.shape[1]:
                if Y is not None:
                    self.selector.fit(X, Y)
                return selector.transform(X)
        except Exception as err:
            print('MyFeatureSelector.transform(): {}'.format(err))
       return X

def fit_transform(self, X, Y=None):
    self.fit(X, Y)
    return self.transform(X, Y)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.