You could use sets (or hashes, whatever the language calls them) to optimise the time efficiency.
Convert the target array to a set, and then subtract the selected source from it (i.e. removing common values). Keep doing this recursively until the target set is empty. Keep track of the best result (using the fewest source arrays as possible). Backtrack if the number of source arrays being used gets past the length of the best solution already found at that moment.
Here is the code in Python:
def find_optimal_coverage(target, sources):
max_size = len(target)
best = None
def recurse(target, sources, selected):
nonlocal max_size, best
if len(target) == 0:
best = selected
max_size = len(best) - 1
return True
if len(selected) == max_size:
return None
for i, source in enumerate(sources):
result = recurse(target - set(source), sources[i+1:],
selected + [list(source)])
if result:
return True
target = set(target) # convert to set for faster lookup
# limit the source lists to elements that occur in the target
sources = list(map(target.intersection, sources))
# limit target to elements that occur in at least one source
target = set.union(*sources)
# sort sources by decreasing length to maximise probability of
# finding optimal solution sooner
sources.sort(key = len, reverse = True)
if recurse(target, sources, []):
return best
result = find_optimal_coverage(
[1, 2, 3, 4, 5, 6, 8],
[
[1, 4, 6, 7],
[2, 3, 5],
[1, 5],
[4],
[1, 6]
]
)
print(result)
See it run on repl.it
In JavaScript:
function subtractArray(s, arr) {
return arr.reduce( (s, v) => (s.delete(v), s), new Set(s) );
}
function findOptimalCoverage(target, sources) {
var maxSize = target.size;
var best = null;
function recurse(target, sources, selected) {
if (target.size == 0) {
best = selected;
maxSize = best.length - 1;
return true;
}
if (selected.length == maxSize) return;
return sources.some( (source, i) =>
recurse(subtractArray(target, source), sources.slice(i+1),
selected.concat([source]))
);
}
target = new Set(target) // convert to set for faster lookup
// limit the source arrays to elements that occur in the target
sources = sources.map( source => source.filter(target.has.bind(target)));
// limit target to elements that occur in at least one source
target = new Set([].concat(...sources));
// sort sources by decreasing length to maximise probability of
// finding optimal solution sooner
sources.sort( (a,b) => b.length - a.length );
if (recurse(target, sources, [])) return best;
}
var result = findOptimalCoverage(
[1, 2, 3, 4, 5, 6, 8],
[
[1, 4, 6, 7],
[2, 3, 5],
[1, 5],
[4],
[1, 6]
]
);
console.log(result);
.as-console-wrapper { max-height: 100% !important; top: 0; }
A1-A5withMatchingArray?