I am using Pandas 0.18.1, and while fiddling with this code,
import pd
def getIndividualDf(item):
var1 = []
# ... populate this list of numbers
var2 = []
# ... populate this other list of numbers
newDf = pd.DataFrame({'var1': var1, 'var2': var2})
newDf['extra_column'] = someIntScalar
yield newDf
dfs = []
for item in someList:
dfs.append(getIndividualDf(item))
resultDf = pd.concat(dfs)
resultDf['segment'] = segmentId # this is an integer scalar
from sqlalchemy import create_engine
engine = create_engine('postgresql://'+user+':'+password+'@'+host+'/'+dbname)
resultDf.reset_index().to_sql('table_name', engine, schema="schema_name", if_exists="append", index=False)
I was getting this exception:
(psycopg2.ProgrammingError) column "index" of relation "table_name" does not exist
Indeed, there is no such column in the table, only because there is no such explicit column in the data frame. Which is why it's weird.
Running
print(list(resultDf))
just before the to_sql() call, yields
['var1', 'var2', 'extra_column', 'segment']
Removing index=False from the to_sql() call changes the error to this:
(psycopg2.ProgrammingError) column "level_0" of relation "table_name" does not exist
I am puzzled. How do I get rid of index column?
Update
print(resultDf.head()) yielded this information:
var1 var2 extra_column segment
0 8 0.101653 2077869737 201606
1 9 0.303694 2077869737 201606
2 10 0.493210 2077869737 201606
3 11 0.661064 2077869737 201606
4 12 0.820924 2077869737 201606