I have exhaustively reviewed/attempted implementations all the other questions on SO corresponding to this challenge and have yet to reach a solution.
Question: how do I convert employee and supervisor pairs into a hierarchical JSON structure to be used for a D3 visualization? There are an unknown number of levels, so it has to be dynamic.
I have a dataframe with five columns (yes, I realize this isn't the actual hierarchy of The Office):
Employee_FN Employee_LN Supervisor_FN Supervisor_LN Level
0 Michael Scott None None 0
1 Jim Halpert Michael Scott 1
2 Dwight Schrute Michael Scott 1
3 Stanley Hudson Jim Halpert 2
4 Pam Beasley Jim Halpert 2
5 Ryan Howard Pam Beasley 3
6 Kelly Kapoor Ryan Howard 4
7 Meredith Palmer Ryan Howard 4
Desired Output Snapshot:
{
"Employee_FN": "Michael",
"Employee_LN": "Scott",
"Level": "0",
"Reports": [{
"Employee_FN": "Jim",
"Employee_LN": "Halpert",
"Level": "1",
"Reports": [{
"Employee_FN": "Stanley",
"Employee_LN": "Hudson",
"Level": "2",
}, {
"Employee_FN": "Pam",
"Employee_LN": "Beasley",
"Level": "2",
}]
}]
}
Current State:
j = (df.groupby(['Level','Employee_FN','Employee_LN'], as_index=False)
.apply(lambda x: x[['Level','Employee_FN','Employee_LN']].to_dict('r'))
.reset_index()
.rename(columns={0:'Reports'})
.to_json(orient='records'))
print(json.dumps(json.loads(j), indent=2, sort_keys=True))
Current Output:
[
{
"Employee_FN": "Michael",
"Employee_LN": "Scott",
"Level": 0,
"Reports": [
{
"Employee_FN": "Michael",
"Employee_LN": "Scott",
"Level": 0
}
]
},
{
"Employee_FN": "Dwight",
"Employee_LN": "Schrute",
"Level": 1,
"Reports": [
{
"Employee_FN": "Dwight",
"Employee_LN": "Schrute",
"Level": 1
}
]
},
{
"Employee_FN": "Jim",
"Employee_LN": "Halpert",
"Level": 1,
"Reports": [
{
"Employee_FN": "Jim",
"Employee_LN": "Halpert",
"Level": 1
}
]
},
{
"Employee_FN": "Pam",
"Employee_LN": "Beasley",
"Level": 2,
"Reports": [
{
"Employee_FN": "Pam",
"Employee_LN": "Beasley",
"Level": 2
}
]
},
{
"Employee_FN": "Stanley",
"Employee_LN": "Hudson",
"Level": 2,
"Reports": [
{
"Employee_FN": "Stanley",
"Employee_LN": "Hudson",
"Level": 2
}
]
},
{
"Employee_FN": "Ryan",
"Employee_LN": "Howard",
"Level": 3,
"Reports": [
{
"Employee_FN": "Ryan",
"Employee_LN": "Howard",
"Level": 3
}
]
},
{
"Employee_FN": "Kelly",
"Employee_LN": "Kapoor",
"Level": 4,
"Reports": [
{
"Employee_FN": "Kelly",
"Employee_LN": "Kapoor",
"Level": 4
}
]
},
{
"Employee_FN": "Meredith",
"Employee_LN": "Palmer",
"Level": 4,
"Reports": [
{
"Employee_FN": "Meredith",
"Employee_LN": "Palmer",
"Level": 4
}
]
}
]
Problems:
- Each person only has themselves as children
- The whole JSON structure appears to be in a dict - I believe it has to be enclosed by {} to be readable
I have tried switched around the groupby and lambda elements in various configurations to reach the desired output as well. Any and all insight would be greatly appreciated! Thank you!
Update:
I changed my code block to this:
j = (df.groupby(['Level','Supervisor_FN','Supervisor_LN'], as_index=False)
.apply(lambda x: x[['Level','Employee_FN','Employee_LN']].to_dict('r'))
.reset_index()
.rename(columns={0:'Reports'})
.rename(columns={'Supervisor_FN':'Employee_FN'})
.rename(columns={'Supervisor_LN':'Employee_LN'})
.to_json(orient='records'))
print(json.dumps(json.loads(j), indent=2, sort_keys=True))
The new output is this:
[
{
"Employee_FN": "Michael",
"Employee_LN": "Scott",
"Level": 1,
"Reports": [
{
"Employee_FN": "Jim",
"Employee_LN": "Halpert",
"Level": 1
},
{
"Employee_FN": "Dwight",
"Employee_LN": "Schrute",
"Level": 1
}
]
},
{
"Employee_FN": "Jim",
"Employee_LN": "Halpert",
"Level": 2,
"Reports": [
{
"Employee_FN": "Stanley",
"Employee_LN": "Hudson",
"Level": 2
},
{
"Employee_FN": "Pam",
"Employee_LN": "Beasley",
"Level": 2
}
]
},
{
"Employee_FN": "Pam",
"Employee_LN": "Beasley",
"Level": 3,
"Reports": [
{
"Employee_FN": "Ryan",
"Employee_LN": "Howard",
"Level": 3
}
]
},
{
"Employee_FN": "Ryan",
"Employee_LN": "Howard",
"Level": 4,
"Reports": [
{
"Employee_FN": "Kelly",
"Employee_LN": "Kapoor",
"Level": 4
},
{
"Employee_FN": "Meredith",
"Employee_LN": "Palmer",
"Level": 4
}
]
}
]
Problems:
- The
Levelmatches the underlying employee for both the underlying employee and the supervisor - The nesting only goes one level deep
df['Sup_level'] = df['Level']-1, and adding appropriately to the 'rename' bit with.rename(columns={0:'Reports', 'Sup_level':'Level', 'Supervisor_FN':'Employee_FN','Supervisor_LN':'Employee_LN'})should work.