CSV to DB2 with Python
Briefly: One solution is to use an SQLAlchemy adapter and Db2’s External Tables.
SQLAlchemy:
The Engine is the starting point for any SQLAlchemy application. It’s “home base” for the actual database and its DBAPI, delivered to the SQLAlchemy application through a connection pool and a Dialect, which describes how to talk to a specific kind of database/DBAPI combination.

Where above, an Engine references both a Dialect and a Pool, which together interpret the DBAPI’s module functions as well as the behavior of the database.
Creating an engine is just a matter of issuing a single call, create_engine():
dialect+driver://username:password@host:port/database
Where dialect is a database name such as mysql, oracle, postgresql, etc., and driver the name of a DBAPI, such as psycopg2, pyodbc, cx_oracle, etc.
Load data by using transient external table:
Transient external tables (TETs) provide a way to define an external table that exists only for the duration of a single query.
TETs have the same capabilities and limitations as normal external tables. A special feature of a TET is that you do not need to define the table schema when you use the TET to load data into a table or when you create the TET as the target of a SELECT statement.
Following is the syntax for a TET:
INSERT INTO <table> SELECT <column_list | *>
FROM EXTERNAL 'filename' [(table_schema_definition)]
[USING (external_table_options)];
CREATE EXTERNAL TABLE 'filename' [USING (external_table_options)]
AS select_statement;
SELECT <column_list | *> FROM EXTERNAL 'filename' (table_schema_definition)
[USING (external_table_options)];
For information about the values that you can specify for the external_table_options variable, see External table options.
General example
- Insert data from a transient external table into the database table on the Db2 server by issuing the following command:
INSERT INTO EMPLOYEE SELECT * FROM external '/tmp/employee.dat' USING (delimiter ',' MAXERRORS 10 SOCKETBUFSIZE 30000 REMOTESOURCE 'JDBC' LOGDIR '/logs' )
Requirements
pip install ibm-db
pip install SQLAlchemy
Pyton code
One example below shows how it works together.
from sqlalchemy import create_engine
usr = "enter_username"
pwd = "enter_password"
hst = "enter_host"
prt = "enter_port"
db = "enter_db_name"
#SQL Alchemy URL
conn_params = "db2+ibm_db://{0}:{1}@{2}:{3}/{4}".format(usr, pwd, hst, prt, db)
shema = "enter_name_restore_shema"
table = "enter_name_restore_table"
destination = "/path/to/csv/file_name.csv"
try:
print("Connecting to DB...")
engine = create_engine(conn_params)
engine.connect() # optional, output: DB2/linux...
print("Successfully Connected!")
except Exception as e:
print("Unable to connect to the server.")
print(str(e))
external = """INSERT INTO {0}.{1} SELECT * FROM EXTERNAL '{2}' USING (CCSID 1208 DELIMITER ',' REMOTESOURCE LZ4 NOLOG TRUE )""".format(
shema, table, destination
)
try:
print("Restoring data to the server...")
engine.execute(external)
print("Data restored successfully.")
except Exception as e:
print("Unable to restore.")
print(str(e))
Conclusion
- A great solution for restoredlarge files, specifically, 600m worked without any problems.
- It is also useful for copying data from one table/database to another table. So that the backup is done as an export of csv and then that csv into DB2 with the given example.
- SQLAlchemy-Engine can be combined with other databases such as: sqlite, mysql, postgresql, oracle, mssql, etc.
