3

I am trying to plot multiple subplots in real-time in my python application. Ideally, I should also be able to plot multiple lines in each subplot, but for simplicity here I assume one line per subplot. In order to do so efficiently (I am looking for fast plots), I am trying to extend one example I found online (https://taher-zadeh.com/speeding-matplotlib-plotting-times-real-time-monitoring-purposes/) to my case. My code is:

import time    
# for Mac OSX
import matplotlib
matplotlib.use('TkAgg')   
import matplotlib.pylab as plt
import random

def test_fps(use_blit=True):

    ax1.cla()
    ax1.set_title('Sensor Input vs. Time -')
    ax1.set_xlabel('Time (s)')
    ax1.set_ylabel('Sensor Input (mV)')
    ax2.cla()
    ax2.set_title('Sensor Input vs. Time -' )
    ax2.set_xlabel('Time (s)')
    ax2.set_ylabel('Sensor Input (mV)')
    ax3.cla()
    ax3.set_title('Sensor Input vs. Time -')
    ax3.set_xlabel('Time (s)')
    ax3.set_ylabel('Sensor Input (mV)')
    ax4.cla()
    ax4.set_title('Sensor Input vs. Time -')
    ax4.set_xlabel('Time (s)')
    ax4.set_ylabel('Sensor Input (mV)')

    plt.ion()  # Set interactive mode ON, so matplotlib will not be blocking the window
    plt.show(False)  # Set to false so that the code doesn't stop here

    cur_time = time.time()
    ax1.hold(True)
    ax2.hold(True)
    ax3.hold(True)
    ax4.hold(True)

    x, y = [], []
    times = [time.time() - cur_time]  # Create blank array to hold time values
    y.append(0)

    line1, = ax1.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
    line2, = ax2.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
    line3, = ax3.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
    line4, = ax4.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")


    fig.show()
    fig.canvas.draw()

    if use_blit:
        background1 = fig.canvas.copy_from_bbox(ax1.bbox) # cache the background
        background2 = fig.canvas.copy_from_bbox(ax2.bbox) # cache the background
        background3 = fig.canvas.copy_from_bbox(ax3.bbox) # cache the background
        background4 = fig.canvas.copy_from_bbox(ax4.bbox) # cache the background

    tic = time.time()

    niter = 200
    i = 0
    while i < niter:

        fields = random.random() * 100

        times.append(time.time() - cur_time)
        y.append(fields)

        # this removes the tail of the data so you can run for long hours. You can cache this
        # and store it in a pickle variable in parallel.

        if len(times) > 50:
           del y[0]
           del times[0]

        xmin, xmax, ymin, ymax = [min(times) / 1.05, max(times) * 1.1, -5,110]

        # feed the new data to the plot and set the axis limits again
        plt.axis([xmin, xmax, ymin, ymax])

        if use_blit:
            fig.canvas.restore_region(background1)    # restore background
            line1.set_xdata(times)
            line1.set_ydata(y)
            ax1.draw_artist(line1)                   # redraw just the points
            fig.canvas.blit(ax1.bbox)                # fill in the axes rectangle


            fig.canvas.restore_region(background2)    # restore background
            line2.set_xdata(times)
            line2.set_ydata(y)
            ax2.draw_artist(line2)                   # redraw just the points
            fig.canvas.blit(ax2.bbox)

            fig.canvas.restore_region(background3)    # restore background
            line3.set_xdata(times)
            line3.set_ydata(y)
            ax3.draw_artist(line3)                   # redraw just the points
            fig.canvas.blit(ax3.bbox)         

            fig.canvas.restore_region(background4)    # restore background
            line4.set_xdata(times)
            line4.set_ydata(y)
            ax4.draw_artist(line4)                   # redraw just the points
            fig.canvas.blit(ax4.bbox) 

        else:
            fig.canvas.draw()

        fig.canvas.flush_events()

        i += 1

    fps = niter / (time.time() - tic)
    return fps

and

fig = plt.figure()
ax1 = fig.add_subplot(4, 1, 1)
ax2 = fig.add_subplot(4, 1, 2)
ax3 = fig.add_subplot(4, 1, 3)
ax4 = fig.add_subplot(4, 1, 4)
fps1 = test_fps(use_blit=True)

The problem with this code is that is only plotting onto the last subplots and Leaves the Others blank.

enter image description here

I am new to python and I guess this is a very silly question but I have not managed to figure it out yet so every hint would be very helpful to me. Thank you

1 Answer 1

4

In the current implementation you set the axis limits only for the last plot, i.e. plt.axis([xmin, xmax, ymin, ymax]) works on the last active subplot.

Instead you would need to update all of the axes ax1 to ax4,

ax1.axis([xmin, xmax, ymin, ymax])
ax2.axis([xmin, xmax, ymin, ymax])
ax3.axis([xmin, xmax, ymin, ymax])
ax4.axis([xmin, xmax, ymin, ymax])

to let their limits follow the data.

Additionally it seems beneficial to update the data outside the blitting condition, such that one can compare blitting without blitting.

Complete code:

import time    
import matplotlib
matplotlib.use('TkAgg')   
import matplotlib.pylab as plt
import random

def test_fps(use_blit=True):

    ax1.cla()
    ax1.set_title('Sensor Input vs. Time -')
    ax1.set_xlabel('Time (s)')
    ax1.set_ylabel('Sensor Input (mV)')
    ax2.cla()
    ax2.set_title('Sensor Input vs. Time -' )
    ax2.set_xlabel('Time (s)')
    ax2.set_ylabel('Sensor Input (mV)')
    ax3.cla()
    ax3.set_title('Sensor Input vs. Time -')
    ax3.set_xlabel('Time (s)')
    ax3.set_ylabel('Sensor Input (mV)')
    ax4.cla()
    ax4.set_title('Sensor Input vs. Time -')
    ax4.set_xlabel('Time (s)')
    ax4.set_ylabel('Sensor Input (mV)')

    plt.ion()  # Set interactive mode ON, so matplotlib will not be blocking the window
    plt.show(False)  # Set to false so that the code doesn't stop here

    cur_time = time.time()
    #    ax1.hold(True)
    #    ax2.hold(True)
    #    ax3.hold(True)
    #    ax4.hold(True)

    x, y = [], []
    times = [time.time() - cur_time]  # Create blank array to hold time values
    y.append(0)

    line1, = ax1.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
    line2, = ax2.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
    line3, = ax3.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
    line4, = ax4.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")


    fig.show()
    fig.canvas.draw()

    if use_blit:
        background1 = fig.canvas.copy_from_bbox(ax1.bbox) # cache the background
        background2 = fig.canvas.copy_from_bbox(ax2.bbox) # cache the background
        background3 = fig.canvas.copy_from_bbox(ax3.bbox) # cache the background
        background4 = fig.canvas.copy_from_bbox(ax4.bbox) # cache the background

    tic = time.time()

    niter = 200
    i = 0
    while i < niter:

        fields = random.random() * 100

        times.append(time.time() - cur_time)
        y.append(fields)

        # this removes the tail of the data so you can run for long hours. You can cache this
        # and store it in a pickle variable in parallel.

        if len(times) > 50:
           del y[0]
           del times[0]

        xmin, xmax, ymin, ymax = [min(times) / 1.05, max(times) * 1.1, -5,110]

        # feed the new data to the plot and set the axis limits again
        ax1.axis([xmin, xmax, ymin, ymax])
        ax2.axis([xmin, xmax, ymin, ymax])
        ax3.axis([xmin, xmax, ymin, ymax])
        ax4.axis([xmin, xmax, ymin, ymax])

        line1.set_data(times, y)
        line2.set_data(times, y)
        line3.set_data(times, y)
        line4.set_data(times, y)

        if use_blit:
            fig.canvas.restore_region(background1)    # restore background
            ax1.draw_artist(line1)                   # redraw just the points
            fig.canvas.blit(ax1.bbox)                # fill in the axes rectangle

            fig.canvas.restore_region(background2)    # restore background
            ax2.draw_artist(line2)                   # redraw just the points
            fig.canvas.blit(ax2.bbox)

            fig.canvas.restore_region(background3)    # restore background
            ax3.draw_artist(line3)                   # redraw just the points
            fig.canvas.blit(ax3.bbox)         

            fig.canvas.restore_region(background4)    # restore background
            ax4.draw_artist(line4)                   # redraw just the points
            fig.canvas.blit(ax4.bbox) 

        else:
            fig.canvas.draw()

        fig.canvas.flush_events()

        i += 1

    fps = niter / (time.time() - tic)
    return fps

fig = plt.figure()
ax1 = fig.add_subplot(4, 1, 1)
ax2 = fig.add_subplot(4, 1, 2)
ax3 = fig.add_subplot(4, 1, 3)
ax4 = fig.add_subplot(4, 1, 4)
fps1 = test_fps(use_blit=True)
print fps1

Just to note this runs without blitting at 10fps and with blitting at 16 fps on my computer.

Sign up to request clarification or add additional context in comments.

4 Comments

This solution works for me, thank you very much. Anyway, on my PC I got 20 fps without blit and 96 fps with blit, I would say a good improvement.
Oh, that's indeed great. If you have time, I would be interested to know the framerates you get for the matplotlib part of this answer of mine to compare it to the 18 and 28 fps I got there.
Well I do not have enough reputation to add a comment under your question. Anyway, I got approx. 13 fps without blit and 16 fps with blit by running the copy-pasted code of the matplotlib version.
That seems reasonable, but opens the question why you got a so much higher framerate in this exmple of yours. Anyways thanks for sharing this.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.