Knowing that:
There are a lot of discussion about plotting equal sized matrices in a cell array and it is quite easy to do without a loop.
For example, to plot the 2-by-2 matrices in mycell:
mycell = {[1 1; 2 1], [1 1; 3 1], [1 1; 4 1]};
We can use cellfun to add a row of NaN at the bottom of each matrix and then convert the cell to a matrix:
mycellnaned = cellfun(@(x) {[x;nan(1,2)]}, mycell);
mymat = cell2mat(mycellnaned');
mymat looks like:
1 1 1 1 1
2 1 3 1 4
NaN NaN NaN NaN NaN
Then we can plot it easily:
mymatx = mymat(:,1:2:end);
mymaty = mymat(:,2:2:end);
figure;
plot(mymatx, mymaty,'+-');
The problem:
The problem is now, how do I do something similar with a cell containing non-equal matrices? Such as:
mycell = {
[1:2; ones(1,2)]';
[1:4; ones(1,4)*2]';
[1:6; ones(1,6)*3]';
[1:8; ones(1,8)*4]';
[1:10; ones(1,10)*5]';
[1:12; ones(1,12)*6]';
};
mycell = repmat(mycell,1000,1);
I would not be able to convert them into one matrix like I did before. I could use a loop, as suggested in this answer, but it would be very inefficient if the cell contains thousands of matrices.
Therefore, I'm looking for a more efficient way of plotting non-equal sized matrices in a cell array.
Note that different colours should be used for different matrices in the figure.

mymatlooks like:" given what came just before. Why are there only 2's in that concatenated array?