1

In the script below, I assign the values 0 or 1 if the DataFrame cell has No or Yes in them.

answer= {'account': ['Adam', 'Ben', 'Tom', 'Isabel'],
     'a1': ['No', 'Yes', 'Yes', 'No'],
     'a2': ['No', 'Yes', 'No', 'No'],
     'a3': ['No', 'Yes', 'No', 'No'],
     'a4': ['Yes', 'No', 'Yes', 'Yes']}
RPI = pd.DataFrame.from_dict(answer)

I'm trying to create a loop or a function for the RPI.loc statements below so I don't have to repeat the 50 columns that I have. Is there a way to do that?

RPI.loc[RPI['a1'] == 'No', 'a1'] = 0
RPI.loc[RPI['a1'] == 'Yes', 'a1'] = 1
RPI.loc[RPI['a2'] == 'No', 'a2'] = 0
RPI.loc[RPI['a2'] == 'Yes', 'a2'] = 1
RPI.loc[RPI['a3'] == 'No', 'a3'] = 0
RPI.loc[RPI['a3'] == 'Yes', 'a3'] = 1
RPI.loc[RPI['a4'] == 'No', 'a4'] = 0
RPI.loc[RPI['a4'] == 'Yes', 'a4'] = 1

    a1  a2  a3  a4  account
0   0   0   0   1   Adam
1   1   1   1   0   Ben
2   1   0   0   1   Tom
3   0   0   0   1   Isabel

1 Answer 1

6

Need replace by dict:

RPI = RPI.replace({'No':0, 'Yes':1})
print (RPI)
   a1  a2  a3  a4 account
0   0   0   0   1    Adam
1   1   1   1   0     Ben
2   1   0   0   1     Tom
3   0   0   0   1  Isabel

If need specify columns for replace by positions add iloc:

print (RPI.iloc[:, 0:4])
    a1   a2   a3   a4
0   No   No   No  Yes
1  Yes  Yes  Yes   No
2  Yes   No   No  Yes
3   No   No   No  Yes

RPI.iloc[:, 0:4] = RPI.iloc[:, 0:4].replace({'No':0, 'Yes':1})
print (RPI)
  a1 a2 a3 a4 account
0  0  0  0  1    Adam
1  1  1  1  0     Ben
2  1  0  0  1     Tom
3  0  0  0  1  Isabel
Sign up to request clarification or add additional context in comments.

1 Comment

Thank you. This worked very well for me. I appreciate it very much.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.