20

Here's my code.

import tensorflow as tf

a=tf.Variable(tf.constant([0,1,2],dtype=tf.int32))
b=tf.Variable(tf.constant([1,1,1],dtype=tf.int32))
recall=tf.metrics.recall(b,a)

init=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    rec=sess.run(recall)
    print(rec)

I tried to test tf.metrics.precision and got the following error message.

FailedPreconditionError (see above for traceback): Attempting to use uninitialized value recall/true_positives/count
     [[Node: recall/true_positives/count/read = Identity[T=DT_FLOAT, _class=["loc:@recall/true_positives/count"], _device="/job:localhost/replica:0/task:0/gpu:0"](recall/true_positives/count)]]
     [[Node: recall/value/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_73_recall/value", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
3

1 Answer 1

45

You also need to initialise the local variables hidden in the tf.metrics.recallmethod.

For example, this piece of code would work:

init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
with tf.Session() as sess:
    sess.run(init_g)
    sess.run(init_l)
Sign up to request clarification or add additional context in comments.

2 Comments

@npf thanks for the answer, but could you please explain what the local_variables_initializer() does? It seems counterintuitive to me, since all the values needed to calculate recall are computed through the graph. What do the local_variables_initializer() do?
The local_variables_initializer will initialize the variables belonging to the LOCAL_VARIABLES collection. This is best described in the answers to this question stackoverflow.com/q/38910198/4282745

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.