I have already written a serial code for solving a Laplace equation, but when I tried to write it in parallel in Julia, it takes more time and memory than the serial one. I wrote a simple example of it. How can I parallel this code?
There is a domain t1.
t2 will be calculated and then t1 = t2
@everywhere function left!(t1,t2,n,l_type,b_left,dx=1.0,k=50.0)
if l_type==1
for i=1:n
t2[i,1]=(b_left*dx/k)+t1[i,2];
t1[i,1]=t2[i,1];
end
else
for i=1:n
t1[i,1]=b_left;
end
end
return t1 end
# parallel left does not work.
@everywhere function pleft!(t1,t2,n,l_type,b_left,dx=1.0,k=50.0)
if l_type==1
@parallel for i=1:n
t2[i,1]=(b_left*dx/k)+t1[i,2];
t1[i,1]=t2[i,1];
end
else
@parallel for i=1:n
t1[i,1]=b_left;
end
end
return t1
end
n = 10;
t1 = SharedArray(Float64,(n,n));
t2=t1;
typ = 0;
value = 10;
dx = 1;
k=50;
@time t3 = pleft!(t1,t2,n,typ,value,dx,k)
@time t2 = left!(t1,t2,n,typ,value,dx,k)
the answer is :
0.000872 seconds (665 allocations: 21.328 KB) # for parallel one
0.000004 seconds (4 allocations: 160 bytes) #for usual one
how can I fix this?
after calculating that I should calculate below in a while loop. I need to parallel below code to.
@everywhere function oneStepseri(t1,N)
t2 = t1;
for j = 2:(N-1)
for i = 2:(N-1)
t2[i,j]=0.25*(t1[i-1,j]+t1[i+1,j]+t1[i,j-1]+t1[i,j+1]);
end
end
return t2;
end
thanks...
@time rand(1000), first you should runrand(1000)three or four times so the JIT compiles it and only then you should@timeit.