I am trying to translate the input dataframe (inp_df) to output dataframe (out_df) using the the data from the cell based intermediate dataframe (matrix_df) as shown below.
There are several cell number based files with distance values shown in matrix_df .
The program iterates by cell & fetches data from appropriate file so each time matrix_df will have the data for all rows of the current cell# that we are iterating for in inp_df.
inp_df
A B cell
100 200 1
115 270 1
145 255 2
115 266 1
matrix_df (cell_1.csv)
B 100 115 199 avg_distance
200 7.5 80.7 67.8 52
270 6.8 53 92 50
266 58 84 31 57
matrix_df (cell_2.csv)
B 145 121 166 avg_distance
255 74.9 77.53 8 53.47
out_df dataframe
A B cell distance avg_distance
100 200 1 7.5 52
115 270 1 53 50
145 255 2 74.9 53.47
115 266 1 84 57
My current thought process for each cell# based data is
- use a apply function to go row by row
- then use a join based on column B in the inp_df with with matrix_df, where the matrix df is somehow translated into a tuple of column name, distance & average distance.
But I am looking for a pandonic way of doing this since my approach will slow down when there are millions of rows in the input. I am specifically looking for core logic inside an iteration to fetch the matches, since in each cell the number of columns in matrix_df would vary
If its any help the matrix files is the distance based outputs from sklearn.metrics.pairwise.pairwise_distances .
NB: In inp_df the value of column B is unique and values of column A may or may not be unique
Also the matrix_dfs first column was empty & i had renamed it with the following code for easiness in understanding since it was a header-less matrix output file.
dist_df = pd.read_csv(mypath,index_col=False)
dist_df.rename(columns={'Unnamed: 0':'B'}, inplace=True)