try the following code, it will generate an old file(10 rows) and new file(2 rows) in your local folder. After I append, the new content all mix up:
import pandas as pd
import os
dir_path = os.path.dirname(os.path.realpath("__file__"))
print(dir_path)
raw_data = {'HOUR': [4, 9, 12, 7, 3, 15, 2, 16, 3, 21],
'LOCATION': ['CA', 'HI', 'CA', 'IN', 'MA', 'OH', 'OH', 'MN', 'NV', 'NJ'],
'TYPE': ['OLD', 'OLD', 'OLD', 'OLD', 'OLD', 'OLD', 'OLD', 'OLD', 'OLD', 'OLD'],
'PRICE': [4, 24, 31, 2, 3, 25, 94, 57, 62, 70]}
old_file = pd.DataFrame(raw_data, columns = ['HOUR', 'LOCATION', 'TYPE', 'PRICE'])
old_file.to_csv(dir_path+"/old_file.csv",index=False)
raw_data = {'HOUR': [2, 22],
'LOCATION': ['CA', 'MN'],
'TYPE': ['NEW', 'NEW'],
'PRICE': [80, 90]}
new_file = pd.DataFrame(raw_data, columns = ['HOUR', 'LOCATION', 'TYPE', 'PRICE'])
new_file.to_csv(dir_path+"/new_file.csv",index=False)
new_file=dir_path+"/new_file.csv"
df=pd.read_csv(new_file)
df.to_csv('old_file.csv', sep='\t', header=None, mode='a')
it will come to:
HOUR LOCATION TYPE PRICE
4 CA OLD 4
9 HI OLD 24
12 CA OLD 31
7 IN OLD 2
3 MA OLD 3
15 OH OLD 25
2 OH OLD 94
16 MN OLD 57
3 NV OLD 62
21 NJ OLD 70
02CANEW80
122MNNEW90