My goal is to animate the hyper-specific (canonical) diffusion equation by being able to "tell" Python to increment the "t" variable existing in said equation. I have easily done this in Mathematica but need to use Python for my assigned research project.
The equation is structured/defined as c(x,y,t), and obviously my question applies for any type of function that c(x,y,t) is set to equal. Every answer related to my question ether:
1) Does not include a function that is not a PDE
2) Consists of not incrementing a time variable (t)
Furthermore, I cannot find any method to graph a 3D equation on Python that is for 2 variables.
EDIT: I have figured out a way to do this.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import random
def fun(x, t):
return x+t #Any equation
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.arange(-20.0, 20.0, 0.05)
t = np.arange(0.0,50.0,1)
X, Y = np.meshgrid(x, t)
zs = np.array([fun(x,t) for x,t in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('X Position')
ax.set_ylabel('Time')
ax.set_zlabel('Concentration')
plt.show()
Credit: Wim I want to use matplotlib to make a 3d plot given a z function
Any help or simple code of an animation procedure would mean a lot, as my research project deals with 7D mathematics and this is essentially the most basic example of a non-trivial representation of what I am trying to do. So expect more questions to come (regardless of an answer).

c(x,y,z,t)in it. nor does it attempt to animate anything. In this sense this is probably too broad to be answered here. Also note that Stackoverflow cannot do your research project for you (else why would it be your project and not the SO community's one?).plot_surfaceplot. If you google that, you'll find How to animate 3d plot_surface in matplotlib. This is hence a duplicate of the already present question.tvariable into the code instead of what is calledframenumberthere. The point is you need to have tried something; so if you implement the code in question and then find a problem, you can ask about it here, but you cannot ask here for just "gimme the codz".